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TECHNICAL FIELD

This disclosure relates to video coding.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-
ing devices, video streaming devices, and the like. Digital
video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2,
MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard presently under development, and
extensions of such standards. A recent draft of the upcoming
HEVC standard is available at http:/phenix.int-evey.fr/jct/
doc_end_user/documents/7_Geneva/wgl1/JCTVC-G1103-
v3.zip. The video devices may transmit, receive, encode,
decode, and/or store digital video information more effi-
ciently by implementing such video coding techniques.

Video coding techniques include spatial (intra-picture)
prediction and/or temporal (inter-picture) prediction to
reduce or remove redundancy inherent in video sequences.
For block-based video coding, a video slice (e.g., a video
frame or a portion of a video frame) may be partitioned into
video blocks, which may also be referred to as treeblocks,
coding units (CUs) and/or coding nodes. Video blocks in an
intra-coded (I) slice of a picture are encoded using spatial
prediction with respect to reference samples in neighboring
blocks in the same picture. Video blocks in an inter-coded (P
or B) slice of a picture may use spatial prediction with
respect to reference samples in neighboring blocks in the
same picture or temporal prediction with respect to reference
samples in other reference pictures. Pictures may be referred
to as frames, and reference pictures may be referred to a
reference frames.

Spatial or temporal prediction results in a predictive block
for a block to be coded. Residual data represents pixel
differences between the original block to be coded and the
predictive block. An inter-coded block is encoded according
to a motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicat-
ing the difference between the coded block and the predic-
tive block. An intra-coded block is encoded according to an
intra-coding mode and the residual data. For further com-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

pression, the residual data may be transformed from the
pixel domain to a transform domain, resulting in residual
transform coefficients, which then may be quantized. The
quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a
one-dimensional vector of transform coefficients, and
entropy coding may be applied to achieve even more com-
pression.

SUMMARY

In general, this disclosure describes techniques for coding
parameter sets and network abstraction layer (NAL) units
for video coding. These techniques may be applied to
single-layer coded data, such as two-dimensional video data,
as well as to scalable video coding (SVC) video data and
multiview video coding (MVC) video data. Thus, the param-
eter sets and NAL units may be mutually compatible
between various types of video data. For example, a video
coder, such as a video encoder or video decoder, may code
a video parameter set (VPS) that defines parameters for one
or more layers of video data. The layers may correspond to,
for example, SVC layers (having various frame rates, spatial
resolutions, and/or quality levels) and/or views of MVC data
(e.g., sequences of images of a scene captured from various
camera perspectives about a horizontal axis).

In one example, a method of coding video data includes
coding a video parameter set (VPS) for one or more layers
of video data, wherein each of the one or more layers of
video data refer to the VPS, and coding the one or more
layers of video data based at least in part on the VPS.

In another example, a device for coding video data
includes a video coder, such as a video encoder or video
decoder, that is configured to code a video parameter set
(VPS) for one or more layers of video data, wherein each of
the one or more layers of video data refer to the VPS, and
code the one or more layers of video data based at least in
part on the VPS.

In another example, a device for coding video data
includes means for coding a video parameter set (VPS) for
one or more layers of video data, wherein each of the one or
more layers of video data refer to the VPS, and means for
coding the one or more layers of video data based at least in
part on the VPS.

In another example, a computer-readable storage medium
has stored thereon instructions that, when executed, cause a
processor to code a video parameter set (VPS) for one or
more layers of video data, wherein each of the one or more
layers of video data refer to the VPS, and code the one or
more layers of video data based at least in part on the VPS.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system that may utilize techniques
for coding parameter sets and network abstraction layer
(NAL) units for one or more layers of video data

FIG. 2 is a block diagram illustrating an example of video
encoder 20 that may implement techniques for coding
parameter sets and NAL units for one or more layers of
video data.
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FIG. 3 is a block diagram illustrating an example of video
decoder 30 that may implement techniques for coding
parameter sets and NAL units for one or more layers of
video data.

FIG. 4 is a conceptual diagram illustrating an example
MVC prediction pattern.

FIG. 5 is a conceptual diagram illustrating a video param-
eter set (VPS) and various layer parameter sets (LPSs).

FIG. 6 is a conceptual diagram illustrating an example
grouping parameter set (GPS) and relationships of the GPS
with other parameter sets and slice headers.

FIG. 7 is a flowchart illustrating an example method for
encoding video data in accordance with the techniques of
this disclosure.

FIG. 8 is a flowchart illustrating an example method for
decoding video data in accordance with the techniques of
this disclosure.

FIG. 9 is a flowchart illustrating an example method of
coding video data based at least in part on a number of
temporal layers as signaled in a VPS.

FIG. 10 is a flowchart illustrating an example method of
coding video data based at least in part on a number of
pictures to be reordered in one or more layers and pictures
to be stored in a decoded picture buffer.

FIG. 11 is a flowchart illustrating an example method of
coding video data based at least in part on hypothetical
reference decoder (HRD) parameters signaled in a VPS.

FIG. 12 is a flowchart illustrating an example method of
coding video data based at least in part on extension data
signaled in a VPS.

DETAILED DESCRIPTION

In general, this disclosure describes coding video data
using a video parameter set (VPS). Video data may be
hierarchically categorized as including a plurality of layers,
a sequence of pictures within a given layer, a picture within
a sequence, slices within a picture, and blocks (e.g., mac-
roblocks or coding tree units) within a slice. Sequence
parameter sets (SPSs) may be used to signal infrequently
changing parameters for a sequence of pictures, and picture
parameter sets (PPSs) may be used to signal infrequently
changing parameters for individual pictures.

In accordance with the techniques of this disclosure, a
VPS may signal infrequently changing parameters for a
plurality of sequences across respective layers. That is, a
VPS may include parameters for a set of temporally co-
located sequences of different layers. Different layers may
include, for example, different views for multi-view video
data, different quality layers, different spatial resolution
layers, temporally scalable layers (that is, layers allowing for
different frame rates), and the like. In this manner, one VPS
may be provided for a plurality of different layers, such that
the VPS signals parameters that are common to each of the
respective layers (e.g., respective sequences within the
respective layers). A bitstream may be said to include each
of the plurality of layers, and the respective layers may form
respective sub-bitstreams. Moreover, a sub-bitstream may
correspond to a combination of two or more layers.

This disclosure describes various examples of data which
may be included in a VPS. Such data may include, in some
examples, an indication of a number of sub-layers (e.g., a
maximum number of sub-layers) within the corresponding
layers. For example, a VPS may include data that signals a
number of temporal layers and/or a maximum number of
temporal layers (e.g., a highest temporal layer identifier).
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As another example, a VPS may include, additionally or
alternatively, data substantially similar to any data previ-
ously signaled in an SPS (that is, signaled in conventional
SPSs). In this manner, when sequences of two or more layers
of a bitstream include substantially similar or identical
parameters, a video coder may code a VPS to signal param-
eters for the sequences of the layers, rather than redundantly
coding such data in respective SPSs for the various
sequences among the different layers.

A VPS may, additionally or alternatively, include data
defining video usability information (VUI), such as video
representation information, hypothetical reference decoder
(HRD) parameters, and/or bitstream restriction information.
Bitstream restriction information may include restrictions on
motion vector range, decoded picture buffer (DPB) size
(e.g., in terms of a number of pictures to be held by the
DPB), number of reordering frames (that is, an indication of
a number of frames to be reordered from decoding order to
display order), coded sizes of blocks (e.g., macroblocks
(MBs) or coding tree units), and coded sizes of pictures. A
VPS may further provide data for one or more VPS exten-
sions, such that the VPS can be extended by future standards
or extensions to the upcoming HEVC standard.

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system 10 that may utilize tech-
niques for coding parameter sets and network abstraction
layer (NAL) units for one or more layers of video data. As
shown in FIG. 1, system 10 includes a source device 12 that
provides encoded video data to be decoded at a later time by
a destination device 14. In particular, source device 12
provides the video data to destination device 14 via a
computer-readable medium 16. Source device 12 and des-
tination device 14 may comprise any of a wide range of
devices, including desktop computers, notebook (i.e., lap-
top) computers, tablet computers, set-top boxes, telephone
handsets such as so-called “smart” phones, so-called
“smart” pads, televisions, cameras, display devices, digital
media players, video gaming consoles, video streaming
device, or the like. In some cases, source device 12 and
destination device 14 may be equipped for wireless com-
munication.

Destination device 14 may receive the encoded video data
to be decoded via computer-readable medium 16. Computer-
readable medium 16 may comprise any type of medium or
device capable of moving the encoded video data from
source device 12 to destination device 14. In one example,
computer-readable medium 16 may comprise a communi-
cation medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in
real-time. The encoded video data may be modulated
according to a communication standard, such as a wireless
communication protocol, and transmitted to destination
device 14. The communication medium may comprise any
wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmis-
sion lines. The communication medium may form part of a
packet-based network, such as a local area network, a
wide-area network, or a global network such as the Internet.
The communication medium may include routers, switches,
base stations, or any other equipment that may be useful to
facilitate communication from source device 12 to destina-
tion device 14.

In some examples, encoded data may be output from
output interface 22 to a storage device. Similarly, encoded
data may be accessed from the storage device by input
interface. The storage device may include any of a variety of
distributed or locally accessed data storage media such as a
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hard drive, Blu-ray discs, DVDs, CD-ROMs, flash memory,
volatile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further
example, the storage device may correspond to a file server
or another intermediate storage device that may store the
encoded video generated by source device 12. Destination
device 14 may access stored video data from the storage
device via streaming or download. The file server may be
any type of server capable of storing encoded video data and
transmitting that encoded video data to the destination
device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage
(NAS) devices, or a local disk drive. Destination device 14
may access the encoded video data through any standard
data connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi connection), a
wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded
video data stored on a file server. The transmission of
encoded video data from the storage device may be a
streaming transmission, a download transmission, or a com-
bination thereof.

The techniques of this disclosure are not necessarily
limited to wireless applications or settings. The techniques
may be applied to video coding in support of any of a variety
of multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite televi-
sion transmissions, Internet streaming video transmissions,
such as dynamic adaptive streaming over HTTP (DASH),
digital video that is encoded onto a data storage medium,
decoding of digital video stored on a data storage medium,
or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmis-
sion to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

In the example of FIG. 1, source device 12 includes video
source 18, video encoder 20, and output interface 22.
Destination device 14 includes input interface 28, video
decoder 30, and display device 32. In accordance with this
disclosure, video encoder 20 of source device 12 may be
configured to apply the techniques for coding parameter sets
and NAL units for one or more layers of video data. In other
examples, a source device and a destination device may
include other components or arrangements. For example,
source device 12 may receive video data from an external
video source 18, such as an external camera. Likewise,
destination device 14 may interface with an external display
device, rather than including an integrated display device.

The illustrated system 10 of FIG. 1 is merely one
example. Techniques for coding parameter sets and NAL
units for one or more layers of video data may be performed
by any digital video encoding and/or decoding device.
Although generally the techniques of this disclosure are
performed by a video encoding device, the techniques may
also be performed by a video encoder/decoder, typically
referred to as a “CODEC.” Moreover, the techniques of this
disclosure may also be performed by a video preprocessor.
Source device 12 and destination device 14 are merely
examples of such coding devices in which source device 12
generates coded video data for transmission to destination
device 14. In some examples, devices 12, 14 may operate in
a substantially symmetrical manner such that each of
devices 12, 14 include video encoding and decoding com-
ponents. Hence, system 10 may support one-way or two-
way video transmission between video devices 12, 14, e.g.,
for video streaming, video playback, video broadcasting, or
video telephony.
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Video source 18 of source device 12 may include a video
capture device, such as a video camera, a video archive
containing previously captured video, and/or a video feed
interface to receive video from a video content provider. As
a further alternative, video source 18 may generate computer
graphics-based data as the source video, or a combination of
live video, archived video, and computer-generated video.
In some cases, if video source 18 is a video camera, source
device 12 and destination device 14 may form so-called
camera phones or video phones. As mentioned above, how-
ever, the techniques described in this disclosure may be
applicable to video coding in general, and may be applied to
wireless and/or wired applications. In each case, the cap-
tured, pre-captured, or computer-generated video may be
encoded by video encoder 20. The encoded video informa-
tion may then be output by output interface 22 onto a
computer-readable medium 16.

Computer-readable medium 16 may include transient
media, such as a wireless broadcast or wired network
transmission, or storage media (that is, non-transitory stor-
age media), such as a hard disk, flash drive, compact disc,
digital video disc, Blu-ray disc, or other computer-readable
media. In some examples, a network server (not shown) may
receive encoded video data from source device 12 and
provide the encoded video data to destination device 14,
e.g., via network transmission. Similarly, a computing
device of a medium production facility, such as a disc
stamping facility, may receive encoded video data from
source device 12 and produce a disc containing the encoded
video data. Therefore, computer-readable medium 16 may
be understood to include one or more computer-readable
media of various forms, in various examples.

Input interface 28 of destination device 14 receives infor-
mation from computer-readable medium 16. The informa-
tion of computer-readable medium 16 may include syntax
information defined by video encoder 20, which is also used
by video decoder 30, that includes syntax elements that
describe characteristics and/or processing of blocks and
other coded units, e.g., GOPs. Display device 32 displays the
decoded video data to a user, and may comprise any of a
variety of display devices such as a cathode ray tube (CRT),
a liquid crystal display (LCD), a plasma display, an organic
light emitting diode (OLED) display, or another type of
display device.

Video encoder 20 and video decoder 30 may operate
according to a video coding standard, such as the High
Efficiency Video Coding (HEVC) standard presently under
development, and may conform to the HEVC Test Model
(HM). Alternatively, video encoder 20 and video decoder 30
may operate according to other proprietary or industry
standards, such as the ITU-T H.264 standard, alternatively
referred to as MPEG-4, Part 10, Advanced Video Coding
(AVC), or extensions of such standards. The techniques of
this disclosure, however, are not limited to any particular
coding standard. Other examples of video coding standards
include MPEG-2 and ITU-T H.263. Although not shown in
FIG. 1, in some aspects, video encoder 20 and video decoder
30 may each be integrated with an audio encoder and
decoder, and may include appropriate MUX-DEMUX units,
or other hardware and software, to handle encoding of both
audio and video in a common data stream or separate data
streams. If applicable, MUX-DEMUX units may conform to
the ITU H.223 multiplexer protocol, or other protocols such
as the user datagram protocol (UDP).

The ITU-T H.264/MPEG-4 (AVC) standard was formu-
lated by the ITU-T Video Coding Experts Group (VCEG)
together with the ISO/IEC Moving Picture Experts Group
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(MPEG) as the product of a collective partnership known as
the Joint Video Team (JVT). In some aspects, the techniques
described in this disclosure may be applied to devices that
generally conform to the H.264 standard. The H.264 stan-
dard is described in ITU-T Recommendation H.264,
Advanced Video Coding for generic audiovisual services, by
the ITU-T Study Group, and dated March, 2005, which may
be referred to herein as the H.264 standard or H.264 speci-
fication, or the H.264/AVC standard or specification. The
Joint Video Team (JVT) continues to work on extensions to
H.264/MPEG-4 AVC.

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder cir-
cuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in
software, a device may store instructions for the software in
a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the techniques of this disclosure. Each
of video encoder 20 and video decoder 30 may be included
in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC)
in a respective device.

The JCT-VC is working on development of the HEVC
standard. The HEVC standardization efforts are based on an
evolving model of a video coding device referred to as the
HEVC Test Model (HM). The HM presumes several addi-
tional capabilities of video coding devices relative to exist-
ing devices according to, e.g., ITU-T H.264/AVC. For
example, whereas H.264 provides nine intra-prediction
encoding modes, the HM may provide as many as thirty-
three intra-prediction encoding modes.

In general, the working model of the HM describes that a
video frame or picture may be divided into a sequence of
treeblocks or largest coding units (LCU) that include both
luma and chroma samples. Syntax data within a bitstream
may define a size for the LCU, which is a largest coding unit
in terms of the number of pixels. A slice includes a number
of consecutive treeblocks in coding order. A video frame or
picture may be partitioned into one or more slices. Each
treeblock may be split into coding units (CUs) according to
a quadtree. In general, a quadtree data structure includes one
node per CU, with a root node corresponding to the tree-
block. If a CU is split into four sub-CUs, the node corre-
sponding to the CU includes four leaf nodes, each of which
corresponds to one of the sub-CUs.

Each node of the quadtree data structure may provide
syntax data for the corresponding CU. For example, a node
in the quadtree may include a split flag, indicating whether
the CU corresponding to the node is split into sub-CUs.
Syntax elements for a CU may be defined recursively, and
may depend on whether the CU is split into sub-CUs. If a
CU is not split further, it is referred as a leat-CU. In this
disclosure, four sub-CUs of a leaf-CU will also be referred
to as leaf-CUs even if there is no explicit splitting of the
original leaf-CU. For example, if a CU at 16x16 size is not
split further, the four 8x8 sub-CUs will also be referred to as
leaf-CUs although the 16x16 CU was never split.

A CU has a similar purpose as a macroblock of the H.264
standard, except that a CU does not have a size distinction.
For example, a treeblock may be split into four child nodes
(also referred to as sub-CUs), and each child node may in
turn be a parent node and be split into another four child
nodes. A final, unsplit child node, referred to as a leaf node

10

15

20

25

30

35

40

45

50

55

60

65

8

of the quadtree, comprises a coding node, also referred to as
a leaf-CU. Syntax data associated with a coded bitstream
may define a maximum number of times a treeblock may be
split, referred to as a maximum CU depth, and may also
define a minimum size of the coding nodes. Accordingly, a
bitstream may also define a smallest coding unit (SCU). This
disclosure uses the term “block” to refer to any of a CU, PU,
or TU, in the context of HEVC, or similar data structures in
the context of other standards (e.g., macroblocks and sub-
blocks thereof in H.264/AVC).

A CU includes a coding node and prediction units (PUs)
and transform units (TUs) associated with the coding node.
A size of the CU corresponds to a size of the coding node
and must be square in shape. The size of the CU may range
from 8x8 pixels up to the size of the treeblock with a
maximum of 64x64 pixels or greater. Each CU may contain
one or more PUs and one or more TUs. Syntax data
associated with a CU may describe, for example, partition-
ing of the CU into one or more PUs. Partitioning modes may
differ between whether the CU is skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction
mode encoded. PUs may be partitioned to be non-square in
shape. Syntax data associated with a CU may also describe,
for example, partitioning of the CU into one or more TUs
according to a quadtree. A TU can be square or non-square
(e.g., rectangular) in shape.

The HEVC standard allows for transformations according
to TUs, which may be different for different CUs. The TUs
are typically sized based on the size of PUs within a given
CU defined for a partitioned LCU, although this may not
always be the case. The TUs are typically the same size or
smaller than the PUs. In some examples, residual samples
corresponding to a CU may be subdivided into smaller units
using a quadtree structure known as “residual quad tree”
(RQT). The leaf nodes of the RQT may be referred to as
transform units (TUs). Pixel difference values associated
with the TUs may be transformed to produce transform
coeflicients, which may be quantized.

A leaf-CU may include one or more prediction units
(PUs). In general, a PU represents a spatial area correspond-
ing to all or a portion of the corresponding CU, and may
include data for retrieving a reference sample for the PU.
Moreover, a PU includes data related to prediction. For
example, when the PU is intra-mode encoded, data for the
PU may be included in a residual quadtree (RQT), which
may include data describing an intra-prediction mode for a
TU corresponding to the PU. As another example, when the
PU is inter-mode encoded, the PU may include data defining
one or more motion vectors for the PU. The data defining the
motion vector for a PU may describe, for example, a
horizontal component of the motion vector, a vertical com-
ponent of the motion vector, a resolution for the motion
vector (e.g., one-quarter pixel precision or one-eighth pixel
precision), a reference picture to which the motion vector
points, and/or a reference picture list (e.g., List 0, List 1, or
List C) for the motion vector.

A leaf-CU having one or more PUs may also include one
or more transform units (TUs). The transform units may be
specified using an RQT (also referred to as a TU quadtree
structure), as discussed above. For example, a split flag may
indicate whether a leat-CU is split into four transform units.
Then, each transform unit may be split further into further
sub-TUs. When a TU is not split further, it may be referred
to as a leaf-TU. Generally, for intra coding, all the leaf-TUs
belonging to a leaf-CU share the same intra prediction mode.
That is, the same intra-prediction mode is generally applied
to calculate predicted values for all TUs of a leaf-CU. For
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intra coding, a video encoder may calculate a residual value
for each leaf-TU using the intra prediction mode, as a
difference between the portion of the CU corresponding to
the TU and the original block. A TU is not necessarily
limited to the size of a PU. Thus, TUs may be larger or
smaller than a PU. For intra coding, a PU may be collocated
with a corresponding leaf-TU for the same CU. In some
examples, the maximum size of a leaf-TU may correspond
to the size of the corresponding leaf-CU.

Moreover, TUs of leaf-CUs may also be associated with
respective quadtree data structures, referred to as residual
quadtrees (RQTs). That is, a leaf-CU may include a quadtree
indicating how the leaf-CU is partitioned into TUs. The root
node of a TU quadtree generally corresponds to a leaf-CU,
while the root node of a CU quadtree generally corresponds
to a treeblock (or LCU). TUs of the RQT that are not split
are referred to as leaf-TUs. In general, this disclosure uses
the terms CU and TU to refer to leaf-CU and leaf-TU,
respectively, unless noted otherwise.

A video sequence typically includes a series of video
frames or pictures. A group of pictures (GOP) generally
comprises a series of one or more of the video pictures. A
GOP may include syntax data in a header of the GOP, a
header of one or more of the pictures, or elsewhere, that
describes a number of pictures included in the GOP. Each
slice of a picture may include slice syntax data that describes
an encoding mode for the respective slice. Video encoder 20
typically operates on video blocks within individual video
slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks
may have fixed or varying sizes, and may differ in size
according to a specified coding standard.

As an example, the HM supports prediction in various PU
sizes. Assuming that the size of a particular CU is 2Nx2N,
the HM supports intra-prediction in PU sizes of 2Nx2N or
NxN, and inter-prediction in symmetric PU sizes of 2Nx2N,
2NxN, Nx2N, or NxN. The HM also supports asymmetric
partitioning for inter-prediction in PU sizes of 2NxnU,
2NxnD, n[L.x2N, and nRx2N. In asymmetric partitioning,
one direction of a CU is not partitioned, while the other
direction is partitioned into 25% and 75%. The portion of the
CU corresponding to the 25% partition is indicated by an “n”
followed by an indication of “Up”, “Down,” “Left,” or
“Right.” Thus, for example, “2NxnU” refers to a 2Nx2N CU
that is partitioned horizontally with a 2Nx0.5N PU on top
and a 2Nx1.5N PU on bottom.

In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of a video
block in terms of vertical and horizontal dimensions, e.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block
will have 16 pixels in a vertical direction (y=16) and 16
pixels in a horizontal direction (x=16). Likewise, an NxN
block generally has N pixels in a vertical direction and N
pixels in a horizontal direction, where N represents a non-
negative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not
necessarily have the same number of pixels in the horizontal
direction as in the vertical direction. For example, blocks
may comprise NxM pixels, where M is not necessarily equal
to N.

Following intra-predictive or inter-predictive coding
using the PUs of a CU, video encoder 20 may calculate
residual data for the TUs of the CU. The PUs may comprise
syntax data describing a method or mode of generating
predictive pixel data in the spatial domain (also referred to
as the pixel domain) and the TUs may comprise coefficients
in the transform domain following application of a trans-
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form, e.g., a discrete cosine transform (DCT), an integer
transform, a wavelet transform, or a conceptually similar
transform to residual video data. The residual data may
correspond to pixel differences between pixels of the unen-
coded picture and prediction values corresponding to the
PUs. Video encoder 20 may form the TUs including the
residual data for the CU, and then transform the TUs to
produce transform coefficients for the CU.

Following any transforms to produce transform coeffi-
cients, video encoder 20 may perform quantization of the
transform coefficients. Quantization generally refers to a
process in which transform coefficients are quantized to
possibly reduce the amount of data used to represent the
coeflicients, providing further compression. The quantiza-
tion process may reduce the bit depth associated with some
or all of the coefficients. For example, an n-bit value may be
rounded down to an m-bit value during quantization, where
n is greater than m.

Following quantization, the video encoder may scan the
transform coefficients, producing a one-dimensional vector
from the two-dimensional matrix including the quantized
transform coefficients. The scan may be designed to place
higher energy (and therefore lower frequency) coefficients at
the front of the array and to place lower energy (and
therefore higher frequency) coefficients at the back of the
array. In some examples, video encoder 20 may utilize a
predefined scan order to scan the quantized transform coef-
ficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform
an adaptive scan. After scanning the quantized transform
coeflicients to form a one-dimensional vector, video encoder
20 may entropy encode the one-dimensional vector, e.g.,
according to context-adaptive variable length coding
(CAVLC), context-adaptive binary arithmetic coding (CA-
BAC), syntax-based context-adaptive binary arithmetic cod-
ing (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements
associated with the encoded video data for use by video
decoder 30 in decoding the video data.

To perform CABAC, video encoder 20 may assign a
context within a context model to a symbol to be transmit-
ted. The context may relate to, for example, whether neigh-
boring values of the symbol are non-zero or not. To perform
CAVLC, video encoder 20 may select a variable length code
for a symbol to be transmitted. Codewords in VL.C may be
constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to
less probable symbols. In this way, the use of VLC may
achieve a bit savings over, for example, using equal-length
codewords for each symbol to be transmitted. The probabil-
ity determination may be based on a context assigned to the
symbol.

In accordance with the techniques of this disclosure, a
video coder, such as video encoder 20 or video decoder 30,
may be configured to code a video parameter set (VPS) for
one or more layers of video data, and to code the one or more
layers of video data based at least in part on the VPS. Tables
2 and 5, described in greater detail below, include example
sets of syntax elements of a VPS. Each of the one or more
layers of video data may refer to the VPS, that is, the same
VPS. In other words, the VPS may apply to all layers of a
common set of video data, e.g., all SVC layers and/or all
views of MVC video data.

The VPS may include various categories of information.
For example, the VPS may include sample dimension coun-
ter description (SDCD). That is, for each dimension, the
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video coder may signal a set of indices. Possible dimensions
include cnt_p: number of priority layers contained in the
coded video sequence; cnt_d: how many different depen-
dency layers in the bitstream, multiple layers with the same
spatial resolution and bit depth may belong to different
dependency layers; cnt_t: how many temporal layers in the
bitstream; cnt_q: maximum number of quality layers for any
dependency layer in the bitstream; and cnt_v: maximum
number of views. The bit depth settings may include 8-bit or
12-bit and may be different for different color component.
The chroma sampling formats may include 4:0:0, 4:2:0 and
4:4:4.

The VPS may also include a sample index to character-
istics mapping. If for each dimension, the characteristics
indicator is not equal to an index ranging from O to the
sample dimension counter minus 1, a loop may be intro-
duced to specify the characteristics indicator for each char-
acteristics index. The mapping may include, for each depen-
dency index, a specific spatial resolution with specific bit
depth value and specific chroma sample format. Note that
this might be omitted, if there is always a fixed look-up table
at the decoder, e.g., 0 may correspond to 4:2:0, 1 may
correspond to 4:4:4, and 2 may correspond to 4:0:0. The
mapping may additionally or alternatively, include: for each
temporal index/id, a specific frame rate or average frame
rate; for each view index, a specific view id; for each bit
depth index, a pair of specific bit depth values for luma and
chroma; and for each chroma sampling format, a specific
chroma sampling format indicator.

The VPS may also include control parameters and tool
enabling/disabling flags, such as the following: a
pem_bit_depth_luma_minusl, a pem_bit_depth_
chroma_minus1, a loop_filter_across_slice_flag,
apcm_loop_filter_disable_flag, a temporal_id_nesting_flag,
one or more tile related syntax elements, a chroma_
pred_from_luma_enabled_flag, a  sample_adaptive o-
ffset_enabled_flag, an adaptive_loop_filter_enabled_flag,
and an inter_4x4_enabled_flag.

The VPS may also include one or more operation point
descriptions. Operation points generally describe a subset of
a total number of views of video data included in a bitstream.
An operation point may include a particular number of
views targeted for output, as well as other views that may be
used for reference when decoding, output, or both. A bit-
stream may include one or more operation points described
by the operation point descriptions. The operation point
descriptions may include information defining a number of
maximum operation points, dependency between different
layers or views, profile and level for each operation point, bit
rate for each operation point, dependency between operation
points, for each operation point, other restrictions, for each
operation point, video usability information (VUI) or part of
VUI, and/or for each layer or view, VUI or part of VUL In
addition, or in the alternative, the operation point descrip-
tions may include, for each operation point, operation point
video coding layer (VCL) network abstraction layer (NAL)
unit representation. In some examples, the operation point
VCL NAL unit representation may include, for each dimen-
sion, three possible choices: (1) a specific index value: e.g.,
for spatial resolution, for bit depth for chroma sampling
format; (2) a range of the index value: e.g., for temporal
layers, O to the highest temporal layer id, for quality layers,
0 to the highest quality layer id; or (3) a list of index values,
e.g., for views, a list of view index values.

In some examples, the VPS may include data indicative of
a maximum number of temporal layers among layers of a
bitstream. That is, video encoder 20 and/or video decoder 30
may be configured to code a VPS including data indicative
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of'a maximum number of temporal layers for a correspond-
ing bitstream. For example, video encoder 20 may determine
a maximum number of temporal layers and encode the VPS
to include data representing the determined maximum num-
ber of temporal layers, whereas video decoder 30 may
decode the VPS to determine the maximum number of
temporal layers. Video encoder 20 and video decoder 30
may also code video data of the bitstream based on the
determined maximum number of temporal layers. For
example, the maximum number of temporal layers may
influence a number of temporal identifiers that are needed to
represent the various temporal layers. As another example,
the maximum number of temporal layers may influence the
manner in which video encoder 20 and video decoder 30
code reference picture identifiers, e.g., using picture order
count (POC) values.

As still another example, video encoder 20 and video
decoder 30 may be configured to code data of a particular
temporal layer using only reference data up to and including
the same temporal layer. In other words, video encoder 20
and video decoder 30 may be configured to avoid coding
data of a particular temporal layer using reference data of a
higher temporal layer. In this manner, video decoder 30 can
be assured of accurately decoding video data of a given set
of temporal layers even after sub-bitstream extraction. That
is, if sub-bitstream extraction is performed, certain temporal
layers above the highest layer of the extracted sub-bitstream
will not be available for reference. By coding data of each
temporal layer only with reference to data of layers at or
below the current layer, errors can be avoided that may
otherwise result from having data at a particular layer
depend on data from a higher layer, which would be lost as
a result of sub-bitstream extraction.

In some examples, the VPS, additionally or alternatively,
includes data indicative of either or both of a number of
pictures to be reordered in one or more layers of a bitstream
and/or a number of pictures to be stored in a decoded picture
buffer (DPB). As noted above, such data may be referred to
as bitstream restriction information. Accordingly, destina-
tion device 14 may determine the capabilities of video
decoder 30 and use the bitstream restriction information to
determine whether the corresponding bitstream is appropri-
ate for being decoded by video decoder 30, or whether
destination device 14 should select alternative content (e.g.,
from a network-based content provider, assuming multiple
versions of the content are available).

Moreover, video encoder 20 and video decoder 30 may
use the bitstream restriction information during coding of
the video data. For example, video encoder 20 may ensure
that the bitstream restriction information is not violated.
That is, assuming that the bitstream restriction information
indicates that at most N pictures are to be stored in a DPB,
video encoder 20 may ensure that no more than N pictures
are included in any combination of one or more reference
picture lists at any given time. As another example, assum-
ing that the picture reordering information indicates that a
picture is to be shifted by at most M pictures, video encoder
20 may ensure that no picture is shifted by more than M
pictures. Shifting of pictures in this manner generally cor-
responds to the difference between decoding order and
display order of a picture. Video decoder 30, likewise, may
use such information during coding, e.g., to perform DPB
management, such as DPB flushing. Video encoder 20 and
video decoder 30 may also use bitstream restriction infor-
mation, such as the maximum number of pictures to be
stored in the DPB and/or the number of pictures to be
reordered, when coding reference picture identifier values.
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In some examples, the VPS, additionally or alternatively,
includes data indicative of hypothetical reference decoder
(HRD) parameters. HRD parameters include, for example,
data describing times at which data is to be removed from a
coded picture buffer (CPB). In decoders, such as video
decoder 30, the CPB represents a buffer in which coded
video data is stored until the data is ready for decoding.
Decoders such as video decoder 30 may also include a
decoded picture buffer (DPB), in which decoded video data
is stored, e.g., to be used as reference data for inter-predicted
data and for reordering of pictures from a decoding order to
a display order.

The HRD parameters may include data indicating when
particular pictures are to be removed from the CPB and
decoded. Thus, video encoder 20 may encode the HRD
parameters of the VPS to indicate when pictures can be
removed from the CPB and decoded, while video decoder 30
may decode the HRD parameters of the VPS to determine
when to remove pictures from the CPB. Likewise, video
encoder 20 and video decoder 30 may code pictures accord-
ing to the HRD parameters, e.g., in a coding order indicated
by the HRD parameters. In this manner, video encoder 20
and/or video decoder 30 may be configured to code a VPS
including HRD parameters, and to code video data corre-
sponding to the VPS based at least in part on the HRD
parameters.

The VPS may also include extension data indicating
whether the VPS has been extended, e.g., to provide data for
one or more additional coding tools. Such coding tools may
be tools that are different than those of a corresponding
video coding standard, such as, for example, ITU-T H.264/
AVC or the upcoming HEVC standard. Moreover, such
coding tools may require configuration data. This configu-
ration data may be provided in the extension data of a VPS.
In this manner, when coding video data using such coding
tools, video encoder 20 and/or video decoder 30 may code
a VPS indicating whether extension data is present, and if so,
extension data of the VPS. Moreover, when such extension
data is present, video encoder 20 and/or video decoder 30
may execute corresponding coding tools to code the video
data using the extension data.

Various video coding standards define the corresponding
syntax, semantics, and decoding process for error-free bit-
streams, any of which conform to a certain profile or level.
Video coding standards generally do not specify the encoder,
but the encoder is tasked with guaranteeing that the gener-
ated bitstreams are standard-compliant for a decoder. In the
context of video coding standards, a “profile” corresponds to
a subset of algorithms, features, or tools and constraints that
apply to them. As defined by the H.264 standard, for
example, a “profile” is a subset of the entire bitstream syntax
that is specified by the H.264 standard. A “level” corre-
sponds to the limitations of the decoder resource consump-
tion, such as, for example, decoder memory and computa-
tion, which are related to the resolution of the pictures, bit
rate, and block processing rate. A profile may be signaled
with a profile_ide (profile indicator) value, while a level may
be signaled with a level_idc (level indicator) value. In
accordance with the techniques of this disclosure, profile
and level information may be specified in operation point
descriptions, as discussed above.

In some examples, each layer or view of a bistream refers
to the video parameter set (VPS), and a Layered sequence
Parameter Set (LPS) can be active for each layer. An LPS
may be kept as lightweight as possible by referring to the
VPS in the design. The LPS may include any or all of the
information discussed below. The L.PS may include a sample
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dimension indication that indicates, for each dimension, an
index to each dimension. For example, if in a VPS, an index
to spatial resolution O is assigned to a spatial characteristic
01 320x240 and an index to spatial resolution 1 is assigned
to 640x480, and the current layer is to be assigned with
resolution of 640x480, video encoder 20 and/or video
decoder 30 may code a syntax element with a value of 1 for
the current layer. That is, video encoder 20 may signal a
value of 1 for the syntax element to specify the resolution of
640x480, whereas video decoder 30 may determine that a
current layer with a syntax element having a value of 1 has
a resolution of 640x480, based on the value of 1 for the
syntax element.

The LPS may also include control parameters and tool
enabling/disabling flags. For example, the control param-
eters and tool enabling/disabling flags may include a
pem_bit_depth_luma_minusl, a pem_bit_depth_
chroma_minusl, a loop_filter_across_slice_flag,
a pem_loop_filter_disable_flag, one or more tile related
syntax elements, a chroma_pred_from_luma_enabled_flag,
a sample_adaptive_offset_enabled_flag, an adaptive_
loop_filter_enabled_flag, and a coding unit (CU) hierarchy.

The LPS may further include information of other types
of parameter sets applying to a slice, a group of slices, a
picture, or several pictures. Each of these parameter sets
may refer to a specific picture parameter set (PPS).

The video coder, such as video encoder 20 and video
decoder 30, may be configured to ensure and/or determine
that a PPS does not refer to an LPS or a VPS. Thus, the video
coder may ensure that each PPS of a bitstream does not refer
to an LPS or a VPS. Parsing of a PPS may be independent.
When a PPS includes one or more of the same syntax
elements as those of a VPS or an LPS, the syntax elements
of the PPS may overwrite those of the VPS or LPS.

A video coder may further be configured to code a
grouping parameter set (GPS) that groups all parameter sets
together. The video coder may code a plurality of different
groups within the GPS, each having individual GPS iden-
tifiers (ids). Each of the groups in the GPS may include a
different combination of parameter sets. In this manner, a
slice header need only include a reference to a correspond-
ing GPS id, and need not include an indication of a type of
parameter set. U.S. Provisional Patent Application Ser. No.
61/590,702, filed Jan. 25, 2012, also describes techniques in
which different types of parameter sets are grouped together
and only the ID of the Parameter Set Grouping RBSP is
signaled in the slice header in greater detail.

As discussed above, the video coder, such as video
encoder 20 or video decoder 30, may be configured to code
a video parameter set and/or a grouping parameter set.
Examples of a video parameter set are discussed in greater
detail with respect to FIG. 5, while examples of a grouping
parameter set are discussed in greater detail with respect to
FIG. 6.

Video encoder 20 may further send syntax data, such as
block-based syntax data, frame-based syntax data, and GOP-
based syntax data, to video decoder 30, e.g., in a frame
header, a block header, a slice header, or a GOP header. The
GOP syntax data may describe a number of frames in the
respective GOP, and the frame syntax data may indicate an
encoding/prediction mode used to encode the corresponding
frame.

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder or
decoder circuitry, as applicable, such as one or more micro-
processors, digital signal processors (DSPs), application
specific integrated circuits (ASICs), field programmable
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gate arrays (FPGAs), discrete logic circuitry, software, hard-
ware, firmware or any combinations thereof. Each of video
encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be inte-
grated as part of a combined video encoder/decoder (CO-
DEC). A device including video encoder 20 and/or video
decoder 30 may comprise an integrated circuit, a micropro-
cessor, and/or a wireless communication device, such as a
cellular telephone.

FIG. 2 is a block diagram illustrating an example of video
encoder 20 that may implement techniques for coding
parameter sets and NAL units for one or more layers of
video data. Video encoder 20 may perform intra- and
inter-coding of video blocks within video slices. Intra-
coding relies on spatial prediction to reduce or remove
spatial redundancy in video within a given video frame or
picture. Inter-coding relies on temporal prediction to reduce
or remove temporal redundancy in video within adjacent
frames or pictures of a video sequence. Intra-mode (I mode)
may refer to any of several spatial based coding modes.
Inter-modes, such as uni-directional prediction (P mode) or
bi-prediction (B mode), may refer to any of several tempo-
ral-based coding modes.

As shown in FIG. 2, video encoder 20 receives a current
video block within a video frame to be encoded. In the
example of FIG. 2, video encoder 20 includes mode select
unit 40, reference picture memory 64, summer 50, transform
processing unit 52, quantization unit 54, and entropy encod-
ing unit 56. Mode select unit 40, in turn, includes motion
compensation unit 44, motion estimation unit 42, intra-
prediction unit 46, and partition unit 48. For video block
reconstruction, video encoder 20 also includes inverse quan-
tization unit 58, inverse transform unit 60, and summer 62.
A deblocking filter (not shown in FIG. 2) may also be
included to filter block boundaries to remove blockiness
artifacts from reconstructed video. If desired, the deblocking
filter would typically filter the output of summer 62. Addi-
tional filters (in loop or post loop) may also be used in
addition to the deblocking filter. Such filters are not shown
for brevity, but if desired, may filter the output of summer 50
(as an in-loop filter).

During the encoding process, video encoder 20 receives a
video frame or slice to be coded. The frame or slice may be
divided into multiple video blocks. Motion estimation unit
42 and motion compensation unit 44 perform inter-predic-
tive coding of the received video block relative to one or
more blocks in one or more reference frames to provide
temporal prediction. Intra-prediction unit 46 may alterna-
tively perform intra-predictive coding of the received video
block relative to one or more neighboring blocks in the same
frame or slice as the block to be coded to provide spatial
prediction. Video encoder 20 may perform multiple coding
passes, e.g., to select an appropriate coding mode for each
block of video data.

Moreover, partition unit 48 may partition blocks of video
data into sub-blocks, based on evaluation of previous par-
titioning schemes in previous coding passes. For example,
partition unit 48 may initially partition a frame or slice into
LCUs, and partition each of the LCUs into sub-CUs based
on rate-distortion analysis (e.g., rate-distortion optimiza-
tion). Mode select unit 40 may further produce a quadtree
data structure indicative of partitioning of an LCU into
sub-CUs. Leaf-node CUs of the quadtree may include one or
more PUs and one or more TUs.

Mode select unit 40 may select one of the coding modes,
intra or inter, e.g., based on error results, and provides the
resulting intra- or inter-coded block to summer 50 to gen-
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erate residual block data and to summer 62 to reconstruct the
encoded block for use as a reference frame. Mode select unit
40 also provides syntax elements, such as motion vectors,
intra-mode indicators, partition information, and other such
syntax information, to entropy encoding unit 56.

Motion estimation unit 42 and motion compensation unit
44 may be highly integrated, but are illustrated separately for
conceptual purposes. Motion estimation, performed by
motion estimation unit 42, is the process of generating
motion vectors, which estimate motion for video blocks. A
motion vector, for example, may indicate the displacement
of a PU of a video block within a current video frame or
picture relative to a predictive block within a reference
frame (or other coded unit) relative to the current block
being coded within the current frame (or other coded unit).
A predictive block is a block that is found to closely match
the block to be coded, in terms of pixel difference, which
may be determined by sum of absolute difference (SAD),
sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values
for sub-integer pixel positions of reference pictures stored in
reference picture memory 64. For example, video encoder
20 may interpolate values of one-quarter pixel positions,
one-eighth pixel positions, or other fractional pixel positions
of the reference picture. Therefore, motion estimation unit
42 may perform a motion search relative to the full pixel
positions and fractional pixel positions and output a motion
vector with fractional pixel precision.

Motion estimation unit 42 calculates a motion vector for
a PU of a video block in an inter-coded slice by comparing
the position of the PU to the position of a predictive block
of a reference picture. The reference picture may be selected
from a first reference picture list (List 0) or a second
reference picture list (List 1), each of which identify one or
more reference pictures stored in reference picture memory
64. Motion estimation unit 42 sends the calculated motion
vector to entropy encoding unit 56 and motion compensation
unit 44.

Motion compensation, performed by motion compensa-
tion unit 44, may involve fetching or generating the predic-
tive block based on the motion vector determined by motion
estimation unit 42. Again, motion estimation unit 42 and
motion compensation unit 44 may be functionally inte-
grated, in some examples. Upon receiving the motion vector
for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion
vector points in one of the reference picture lists. Summer 50
forms a residual video block by subtracting pixel values of
the predictive block from the pixel values of the current
video block being coded, forming pixel difference values, as
discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components,
and motion compensation unit 44 uses motion vectors
calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may
also generate syntax elements associated with the video
blocks and the video slice for use by video decoder 30 in
decoding the video blocks of the video slice.

Intra-prediction unit 46 may intra-predict a current block,
as an alternative to the inter-prediction performed by motion
estimation unit 42 and motion compensation unit 44, as
described above. In particular, intra-prediction unit 46 may
determine an intra-prediction mode to use to encode a
current block. In some examples, intra-prediction unit 46
may encode a current block using various intra-prediction
modes, e.g., during separate encoding passes, and intra-
prediction unit 46 (or mode select unit 40, in some
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examples) may select an appropriate intra-prediction mode
to use from the tested modes.

For example, intra-prediction unit 46 may calculate rate-
distortion values using a rate-distortion analysis for the
various tested intra-prediction modes, and select the intra-
prediction mode having the best rate-distortion characteris-
tics among the tested modes. Rate-distortion analysis gen-
erally determines an amount of distortion (or error) between
an encoded block and an original, unencoded block that was
encoded to produce the encoded block, as well as a bitrate
(that is, a number of bits) used to produce the encoded block.
Intra-prediction unit 46 may calculate ratios from the dis-
tortions and rates for the various encoded blocks to deter-
mine which intra-prediction mode exhibits the best rate-
distortion value for the block.

After selecting an intra-prediction mode for a block,
intra-prediction unit 46 may provide information indicative
of'the selected intra-prediction mode for the block to entropy
encoding unit 56. Entropy encoding unit 56 may encode the
information indicating the selected intra-prediction mode.
Video encoder 20 may include in the transmitted bitstream
configuration data, which may include a plurality of intra-
prediction mode index tables and a plurality of modified
intra-prediction mode index tables (also referred to as code-
word mapping tables), definitions of encoding contexts for
various blocks, and indications of a most probable intra-
prediction mode, an intra-prediction mode index table, and
a modified intra-prediction mode index table to use for each
of the contexts.

Video encoder 20 forms a residual video block by sub-
tracting the prediction data from mode select unit 40 from
the original video block being coded. Summer 50 represents
the component or components that perform this subtraction
operation. Transform processing unit 52 applies a transform,
such as a discrete cosine transform (DCT) or a conceptually
similar transform, to the residual block, producing a video
block comprising residual transform coefficient values.
Transform processing unit 52 may perform other transforms
which are conceptually similar to DCT. Wavelet transforms,
integer transforms, sub-band transforms or other types of
transforms could also be used.

In any case, transform processing unit 52 applies the
transform to the residual block, producing a block of
residual transform coefficients. The transform may convert
the residual information from a pixel value domain to a
transform domain, such as a frequency domain. Transform
processing unit 52 may send the resulting transform coef-
ficients to quantization unit 54. Quantization unit 54 quan-
tizes the transform coefficients to further reduce bit rate. The
quantization process may reduce the bit depth associated
with some or all of the coefficients. The degree of quanti-
zation may be modified by adjusting a quantization param-
eter. In some examples, quantization unit 54 may then
perform a scan of the matrix including the quantized trans-
form coefflicients. Alternatively, entropy encoding unit 56
may perform the scan.

Following quantization, entropy encoding unit 56 entropy
codes the quantized transform coeflicients. For example,
entropy encoding unit 56 may perform context adaptive
variable length coding (CAVLC), context adaptive binary
arithmetic coding (CABAC), syntax-based context-adaptive
binary arithmetic coding (SBAC), probability interval par-
titioning entropy (PIPE) coding or another entropy coding
technique. In the case of context-based entropy coding,
context may be based on neighboring blocks. Following the
entropy coding by entropy encoding unit 56, the encoded
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bitstream may be transmitted to another device (e.g., video
decoder 30) or archived for later transmission or retrieval.

Inverse quantization unit 58 and inverse transform unit 60
apply inverse quantization and inverse transformation,
respectively, to reconstruct the residual block in the pixel
domain, e.g., for later use as a reference block. Motion
compensation unit 44 may calculate a reference block by
adding the residual block to a predictive block of one of the
frames of reference picture memory 64. Motion compensa-
tion unit 44 may also apply one or more interpolation filters
to the reconstructed residual block to calculate sub-integer
pixel values for use in motion estimation. Summer 62 adds
the reconstructed residual block to the motion compensated
prediction block produced by motion compensation unit 44
to produce a reconstructed video block for storage in refer-
ence picture memory 64. The reconstructed video block may
be used by motion estimation unit 42 and motion compen-
sation unit 44 as a reference block to inter-code a block in
a subsequent video frame.

Video encoder 20 may further be configured to code a
video parameter set (VPS), a layer parameter set (LPS),
and/or a grouping parameter set, in accordance with the
techniques of this disclosure, as well as a sequence param-
eter set (SPS), picture parameter set (PPS), adaptation
parameter set (APS), or other such signaling data structures.
More particularly, entropy encoding unit 56 may be config-
ured to code any or all of these data structures. To the extent
that parameters of these various data structures may impact
coding performance, mode select unit 40 may select appro-
priate parameters and pass the parameters to entropy encod-
ing unit 56 for inclusion within, e.g., a VPS. Other param-
eters, such as a number of temporal layers, a number of
pictures to be reordered, and a number of pictures to be
stored in a decoded picture buffer, may be selected by a user,
e.g., an administrator. In other examples, certain parameters,
such as HRD parameters, may arise through the encoding
process.

Entropy encoding unit 56 may code a VPS to include any
or all of the various types of data described by this disclo-
sure. Video encoder 20 may also encode data in accordance
with the parameters of the VPS. More particularly, video
encoder 20 may code sequences of pictures among one or
more layers of video data to which the VPS corresponds in
accordance with the parameters of the VPS.

In this manner, video encoder 20 of FIG. 2 represents an
example of a video encoder configured to code a video
parameter set (VPS) for one or more layers of video data,
wherein each of the one or more layers of video data refer
to the VPS, and code the one or more layers of video data
based at least in part on the VPS.

Although generally described with respect to a video
encoder, encoding of a VPS may be performed by other
devices, e.g., a media-aware network element (MANE). A
MANE may correspond to a network element between a
source device (such as source device 12 of FIG. 1) and a
destination device (such as destination device 14). The
MANE may be configured to encode a VPS in accordance
with the techniques of this disclosure. The MANE may
generate the VPS using data of other data structures received
by the MANE, e.g., sequence parameter sets.

FIG. 3 is a block diagram illustrating an example of video
decoder 30 that may implement techniques for coding
parameter sets and NAL units for one or more layers of
video data. In the example of FIG. 3, video decoder 30
includes an entropy decoding unit 70, motion compensation
unit 72, intra prediction unit 74, inverse quantization unit 76,
inverse transformation unit 78, reference picture memory 82
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and summer 80. Reference picture memory 82 may also be
referred to as a “decoded picture buffer,” or DPB. Video
decoder 30 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with
respect to video encoder 20 (FIG. 2). Motion compensation
unit 72 may generate prediction data based on motion
vectors received from entropy decoding unit 70, while
intra-prediction unit 74 may generate prediction data based
on intra-prediction mode indicators received from entropy
decoding unit 70.

During the decoding process, video decoder 30 receives
an encoded video bitstream that represents video blocks of
an encoded video slice and associated syntax elements from
video encoder 20. Entropy decoding unit 70 of video
decoder 30 entropy decodes the bitstream to generate quan-
tized coefficients, motion vectors or intra-prediction mode
indicators, and other syntax elements. Entropy decoding unit
70 forwards the motion vectors to and other syntax elements
to motion compensation unit 72. Video decoder 30 may
receive the syntax elements at the video slice level and/or the
video block level.

When the video slice is coded as an intra-coded (I) slice,
intra prediction unit 74 may generate prediction data for a
video block of the current video slice based on a signaled
intra prediction mode and data from previously decoded
blocks of the current frame or picture. When the video frame
is coded as an inter-coded (i.e., B, P or GPB) slice, motion
compensation unit 72 produces predictive blocks for a video
block of the current video slice based on the motion vectors
and other syntax elements received from entropy decoding
unit 70. The predictive blocks may be produced from one of
the reference pictures within one of the reference picture
lists. Video decoder 30 may construct the reference frame
lists, List 0 and List 1, using default construction techniques
based on reference pictures stored in reference picture
memory 82.

Motion compensation unit 72 determines prediction infor-
mation for a video block of the current video slice by parsing
the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for
the current video block being decoded. For example, motion
compensation unit 72 uses some of the received syntax
elements to determine a prediction mode (e.g., intra- or
inter-prediction) used to code the video blocks of the video
slice, an inter-prediction slice type (e.g., B slice, P slice, or
GPB slice), construction information for one or more of the
reference picture lists for the slice, motion vectors for each
inter-encoded video block of the slice, inter-prediction status
for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video
slice.

Motion compensation unit 72 may also perform interpo-
lation based on interpolation filters. Motion compensation
unit 72 may use interpolation filters as used by video
encoder 20 during encoding of the video blocks to calculate
interpolated values for sub-integer pixels of reference
blocks. In this case, motion compensation unit 72 may
determine the interpolation filters used by video encoder 20
from the received syntax elements and use the interpolation
filters to produce predictive blocks.

Inverse quantization unit 76 inverse quantizes, i.e., de-
quantizes, the quantized transform coeflicients provided in
the bitstream and decoded by entropy decoding unit 80. The
inverse quantization process may include use of a quanti-
zation parameter QPY calculated by video decoder 30 for
each video block in the video slice to determine a degree of
quantization and, likewise, a degree of inverse quantization
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that should be applied. Inverse transform unit 78 applies an
inverse transform, e.g., an inverse DCT, an inverse integer
transform, or a conceptually similar inverse transform pro-
cess, to the transform coefficients in order to produce
residual blocks in the pixel domain.

After motion compensation unit 72 generates the predic-
tive block for the current video block based on the motion
vectors and other syntax elements, video decoder 30 forms
a decoded video block by summing the residual blocks from
inverse transform unit 78 with the corresponding predictive
blocks generated by motion compensation unit 72. Summer
90 represents the component or components that perform
this summation operation. If desired, a deblocking filter may
also be applied to filter the decoded blocks in order to
remove blockiness artifacts. Other loop filters (either in the
coding loop or after the coding loop) may also be used to
smooth pixel transitions, or otherwise improve the video
quality. The decoded video blocks in a given frame or
picture are then stored in reference picture memory 82,
which stores reference pictures used for subsequent motion
compensation. Reference picture memory 82 also stores
decoded video for later presentation on a display device,
such as display device 32 of FIG. 1.

In accordance with the techniques of this disclosure,
video decoder 30 may decode a video parameter set (VPS),
a layer parameter set (LPS), and/or a grouping parameter set,
in accordance with the techniques of this disclosure, as well
as a sequence parameter set (SPS), picture parameter set
(PPS), adaptation parameter set (APS), or other such sig-
naling data structures. More particularly, entropy decoding
unit 70 may be configured to decode any or all of these data
structures. By decoding these various data structures,
entropy decoding unit 70 may determine parameters to be
used for decoding corresponding video data. For example,
video decoder 30 may decode corresponding sequences of
video data of one or more layers using parameters of a
decoded VPS.

Although not shown in FIG. 3, video decoder 30 may
additionally include a coded picture buffer (CPB). The CPB
would ordinarily be provided before entropy decoding unit
70. Alternatively, the CPB may be coupled to entropy
decoding unit 70 for temporary storage, or at the output of
entropy decoding unit 70 for storing entropy-decoded data
until such data is to be decoded. In general, the CPB stores
coded video data until the coded video data is to be decoded,
e.g., as indicated by HRD parameters, which video decoder
30 may extract from a decoded VPS. Likewise, other ele-
ments of video decoder 30 may be configured to decode
video data using, e.g., the VPS. For example, video decoder
30 may decode temporal identifiers for pictures of various
temporal layers, data indicating a number of pictures to be
reordered and/or stored in reference picture memory 82
(representing a DPB).

Moreover, video decoder 30 may include additional pro-
cessing units for processing video data according to various
coding tools provided by extensions of a video coding
standard. Alternatively, existing elements of video decoder
30 shown in FIG. 3 may be configured to execute the coding
tools of such extensions. Entropy decoding unit 70 may be
configured to decode VPS extension data and provide such
extension data to the units configured to execute the coding
tools provided by the extensions.

In this manner, video decoder 30 of FIG. 3 represents an
example of a video decoder configured to code a video
parameter set (VPS) for one or more layers of video data,
wherein each of the one or more layers of video data refer
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to the VPS, and code the one or more layers of video data
based at least in part on the VPS.

Although generally described with respect to a video
decoder, decoding of a VPS may be performed by other
devices, e.g., a media-aware network element (MANE). The
MANE may be configured to decode a VPS in accordance
with the techniques of this disclosure. The MANE may
further generate other parameter set data, such as one or
more sequence parameter sets, using the data of the VPS. In
this manner, the MANE may provide for backwards-com-
patibility with previous standards, such as ITU-T H.264/
AVC.

FIG. 4 is a conceptual diagram illustrating an example
MVC prediction pattern. Multi-view video coding (MVC) is
an extension of ITU-T H.264/AVC. A similar technique may
be applied to HEVC. In the example of FIG. 4, eight views
(having view IDs “S0” through “S7”) are illustrated, and
twelve temporal locations (“T0” through “T11”) are illus-
trated for each view. That is, each row in FIG. 4 corresponds
to a view, while each column indicates a temporal location.

A typical MVC prediction (including both inter-picture
prediction within each view and inter-view prediction) struc-
ture for multi-view video coding is shown in FIG. 4, where
predictions are indicated by arrows, the pointed-to object
using the point-from object for prediction reference. In
MVC, the inter-view prediction is supported by disparity
motion compensation, which may use the syntax of the
H.264/AVC motion compensation, but allows a picture in a
different view to be used as a reference picture.

Coding of two views could also be supported by MVC,
and one of the advantages of MVC is that an MVC encoder
could take more than two views as a 3D video input and an
MVC decoder can decode such a multiview representation.
So any renderer with MVC decoder may be configured to
receive 3D video content with more than two views.

Although MVC has a so-called base view which is
decodable by H.264/AVC decoders and stereo view pair
could be supported also by MVC, one advantage of MVC is
that it could support an example that uses more than two
views as a 3D video input and decodes this 3D video
represented by the multiple views. A renderer of a client
having an MVC decoder may expect 3D video content with
multiple views.

A typical MVC decoding order is referred to as time-first
coding. An access unit may include coded pictures of all
views for one output time instance. For example, each of the
pictures of time T0 may be included in a common access
unit, each of the pictures of time T1 may be included in a
second, common access unit, and so on. The decoding order
is not necessarily identical to the output or display order.

Frames in FIG. 4 are indicated at the intersection of each
row and each column in FIG. 4 using a shaded block
including a letter, designating whether the corresponding
frame is intra-coded (that is, an I-frame), or inter-coded in
one direction (that is, as a P-frame) or in multiple directions
(that is, as a B-frame). In general, predictions are indicated
by arrows, where the pointed-to frame uses the pointed-from
object for prediction reference. For example, the P-frame of
view S2 at temporal location TO0 is predicted from the
I-frame of view S0 at temporal location T0.

As with single view video encoding, frames of a multi-
view video coding video sequence may be predictively
encoded with respect to frames at different temporal loca-
tions. For example, the b-frame of view S0 at temporal
location T1 has an arrow pointed to it from the I-frame of
view S0 at temporal location T0, indicating that the b-frame
is predicted from the I-frame. Additionally, however, in the
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context of multiview video encoding, frames may be inter-
view predicted. That is, a view component can use the view
components in other views for reference. In MVC, for
example, inter-view prediction is realized as if the view
component in another view is an inter-prediction reference.
The potential inter-view references are signaled in the
Sequence Parameter Set (SPS) MVC extension and can be
modified by the reference picture list construction process,
which enables flexible ordering of the inter-prediction or
inter-view prediction references.

In the MVC extension of H.264/AVC, as an example,
inter-view prediction is supported by disparity motion com-
pensation, which uses the syntax of the H.264/AVC motion
compensation, but allows a picture in a different view to be
used as a reference picture. Coding of two views can be
supported by MVC, which is generally referred to as ste-
reoscopic views. One of the advantages of MVC is that an
MVC encoder could take more than two views as a 3D video
input and an MVC decoder can decode such a multiview
representation. So a rendering device with an MVC decoder
may expect 3D video contents with more than two views.

In MVC, inter-view prediction (IVP) is allowed among
pictures in the same access unit (that is, with the same time
instance). An access unit is, generally, a unit of data includ-
ing all view components (e.g., all NAL units) for a common
temporal instance. Thus, in MVC, inter-view prediction is
permitted among pictures in the same access unit. When
coding a picture in one of the non-base views, the picture
may be added into a reference picture list, if it is in a
different view but with the same time instance (e.g., the
same POC value, and thus, in the same access unit). An
inter-view prediction reference picture may be put in any
position of a reference picture list, just like any inter
prediction reference picture.

In the context of multi-view video coding, there are two
kinds of motion vectors. One is normal motion vectors
pointing to temporal reference pictures, and the correspond-
ing inter prediction mode is referred to as motion compen-
sated prediction (MCP). The other is disparity motion vec-
tors pointing to pictures in a different view, and the
corresponding inter-view prediction mode is referred to as
disparity-compensated prediction (DCP).

In conventional HEVC, there are two modes for the
prediction of motion parameters: one is merge mode, and the
other is advanced motion vector prediction (AMVP). In the
merge mode, a candidate list of motion parameters (refer-
ence pictures, and motion vectors) is constructed where the
candidate can be from spatial or temporal neighboring
blocks. The spatially and temporally neighboring blocks
may form a candidate list, that is, a set of candidates from
which motion prediction information may be selected.
Accordingly, video encoder 20 may code the motion param-
eters chosen as motion prediction information by coding an
index into the candidate list. After video decoder 30 has
decoded the index, all the motion parameters of the corre-
sponding block where the index points to may be inherited,
in merge mode.

In AMVP, accordingly conventional HEVC, a candidate
list of motion vector predictors for each motion hypothesis
is derived based on the coded reference index. This list
includes motion vectors of neighboring blocks that are
associated with the same reference index as well as a
temporal motion vector predictor which is derived based on
the motion parameters of the neighboring block of the
co-located block in a temporal reference picture. The chosen
motion vectors are signaled by transmitting an index into the
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candidate list. In addition, the reference index values and
motion vector differences are also signaled.

FIG. 4 provides various examples of inter-view predic-
tion. Frames of view S1, in the example of FIG. 4, are
illustrated as being predicted from frames at different tem-
poral locations of view S1, as well as inter-view predicted
from frames of frames of views S0 and S2 at the same
temporal locations. For example, the b-frame of view S1 at
temporal location T1 is predicted from each of the B-frames
of view S1 at temporal locations T0 and T2, as well as the
b-frames of views S0 and S2 at temporal location T1.

In the example of FIG. 4, capital “B” and lowercase “b”
are intended to indicate different hierarchical relationships
between frames, rather than different encoding methodolo-
gies. In general, capital “B” frames are relatively higher in
the prediction hierarchy than lowercase “b” frames. FIG. 4
also illustrates variations in the prediction hierarchy using
different levels of shading, where a greater amount of
shading (that is, relatively darker) frames are higher in the
prediction hierarchy than those frames having less shading
(that is, relatively lighter). For example, all I-frames in FIG.
4 are illustrated with full shading, while P-frames have a
somewhat lighter shading, and B-frames (and lowercase
b-frames) have various levels of shading relative to each
other, but always lighter than the shading of the P-frames
and the I-frames.

In general, the prediction hierarchy is related to view
order indexes, in that frames relatively higher in the predic-
tion hierarchy should be decoded before decoding frames
that are relatively lower in the hierarchy, such that those
frames relatively higher in the hierarchy can be used as
reference frames during decoding of the frames relatively
lower in the hierarchy. A view order index is an index that
indicates the decoding order of view components in an
access unit. The view order indices are implied in the SPS
MVC extension, as specified in Annex H of H.264/AVC (the
MVC amendment). In the SPS, for each index i, the corre-
sponding view_id is signaled. In some examples, the decod-
ing of the view components shall follow the ascending order
of the view order index. If all the views are presented, then
the view order indexes are in a consecutive order from 0 to
num_views_minus_1.

In this manner, frames used as reference frames may be
decoded before decoding the frames that are encoded with
reference to the reference frames. A view order index is an
index that indicates the decoding order of view components
in an access unit. For each view order index i, the corre-
sponding view_id is signaled. The decoding of the view
components follows the ascending order of the view order
indexes. If all the views are presented, then the set of view
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order indexes may comprise a consecutively ordered set
from zero to one less than the full number of views.

For certain frames at equal levels of the hierarchy, decod-
ing order may not matter relative to each other. For example,
the I-frame of view S0 at temporal location T0 is used as a
reference frame for the P-frame of view S2 at temporal
location T0, which is in turn used as a reference frame for
the P-frame of view S4 at temporal location T0. Accord-
ingly, the I-frame of view S0 at temporal location T0 should
be decoded before the P-frame of view S2 at temporal
location T0, which should be decoded before the P-frame of
view S4 at temporal location T0. However, between views
51 and S3, a decoding order does not matter, because views
51 and S3 do not rely on each other for prediction, but
instead are predicted only from views that are higher in the
prediction hierarchy. Moreover, view 51 may be decoded
before view S4, so long as view 51 is decoded after views
S0 and S2.

In this manner, a hierarchical ordering may be used to
describe views S0 through S7. Let the notation SA>SB mean
that view SA should be decoded before view SB. Using this
notation, S0>S2>S4>S6>S7, in the example of FIG. 4. Also,
with respect to the example of FIG. 4, S0>S1, S2>S1,
S2>S3, S4>83, S4>85, and S6>S5. Any decoding order for
the views that does not violate these requirements is pos-
sible. Accordingly, many different decoding orders are pos-
sible, with only certain limitations.

In accordance with the techniques of this disclosure, each
of views S0-S7 may be considered a respective layer of a
corresponding bitstream. Thus, a VPS may describe param-
eters of the bitstream applicable to any or all of views S0-S7,
while individual layer parameter sets may be provided for
any or all of views S0-S7. In addition, a grouping parameter
set may be provided for a group of parameter sets, such that
slices within individual pictures of views S0-S7 may simply
refer to the identifier of a grouping parameter set.

As shown in FIG. 4, a view component can use the view
components in other views for reference. This is referred to
as inter-view prediction. In MVC, inter-view prediction is
realized as if the view component in another view was an
inter prediction reference. Video encoder 20 and video
decoder 30 may code the potential inter-view references in
the Sequence Parameter Set (SPS) MVC extension (as
shown in the example of Table 1). Video encoder 20 and
video decoder 30 may further modify the potential inter-
view references by executing the reference picture list
construction process, which may enable flexible ordering of
the inter prediction or inter-view prediction references.

TABLE 1
seq_ parameter_set__mvc__extension( ) { C Descriptor
num_ views__minusl 0 ue(v)
for(i=0;i<=num_views_minusl; i++ )
view_id[ 1] 0 ue(v)
for(i=1; i <= num_views_minusl; i++ ) {
num__anchor_refs_ 10[i] 0 ue(v)
for( j = 0; j < num_anchor_refs 10[i]; j++)
anchor_ref 10[1][]j] 0 ue(v)
num__anchor_refs_ 11[1] 0 ue(v)
for(j = 0; j < num_anchor_refs I1[i]; j++)
anchor_ref I1[i][]] 0 ue(v)
)
for(i=1;1i<=num_views_minusl; i++ ) {
num_ non_ anchor_ refs_ 10[ i] 0 ue(v)

for(j = 0; j <num_ non_ anchor refs_ 10[ i]; j++)
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seq__parameter_set__mvc__extension( ) {

C Descriptor

non_anchor_ref 10[1i][j] 0 ue(v)
num__non_ anchor_refs [1[1i] 0 ue(v)
for(j=0;j <num_non_anchor_refs I1[1]; j++)
non_anchor_ref 1171 ][] 0 ue(v)
num__level values_ signaled_minusl 0 ue(v)
for(i=0;i<=num_level_values_signaled_minusl; i++ ) {
level_ide[ 1] 0 u(®)
num__applicable__ops__minusl1[ i ] 0 ue(v)
for( j = 0; j <= num__applicable_ops_minus1[ i ]; j++ ) {
applicable__op_ temporal_id[ i ][] ] 0 u@3)
applicable__op_ num_ target_ views_minusl[i ][] ] 0 ue(v)
for( k = 0; k <= applicable__op_ num__target views_minusl[ i ][] ]; k++)
applicable__op_ target_ view_id[ i ][j ][ k] 0 ue(v)
applicable__op_ num_ views_minusl[i ][] ] 0 ue(v)

In the SPS MVC extension shown in Table 1, for each
view, the number of views that can be used to form reference
picture list 0 and reference picture list 1 are signaled.
Prediction relationship for an anchor picture, as signaled in
the SPS MVC extension, can be different from the prediction
relationship for a non-anchor picture (signaled in the SPS
MVC extension) of the same view.

Video coding standards include ITU-T H.261, ISO/IEC
MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,
ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264
(also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multiview Video Coding
(MVC) extensions.

In addition, there is a new video coding standard, namely
High-Efficiency Video Coding (HEVC), being developed by
the Joint Collaboration Team on Video Coding (JCT-VC) of
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG). A recent Working
Draft (WD) of HEVC, and referred to as HEVC WD4
hereinafter, is available from http://phenix.int-evey.fr/jct/
doc_end_user/documents/6_Torino/wgl11/JCTVC-F803-
v3.zip, denoted as HEVC WD4dl1.

The sequence and picture parameter set mechanism
decouples the transmission of infrequently changing infor-
mation from the transmission of coded block data. Sequence
and picture parameter sets may, in some applications, be
conveyed “out-of-band” using a reliable transport mecha-
nism. A picture parameter set raw byte sequence payload
(RBSP) may include parameters that can be referred to by
the coded slice network abstraction layer (NAL) units of one
or more coded pictures. A sequence parameter set RBSP may
include parameters that can be referred to by one or more
picture parameter set RBSPs or one or more supplemental
enhancement information (SEI) NAL units containing a
buffering period SEI message. A sequence parameter set
RBSP may include parameters that can be referred to by one
or more picture parameter set RBSPs or one or more SEI
NAL units containing a buffering period SEI message.

The sequence parameter set may include an optional set of
parameters called video usability information (VUI). VUI
may include the following three categories of optional
information: video representation information, Hypothetical
Reference Decoder (HRD) information, and bitstream
restriction information. Video representation information
includes the aspect ratio, color space transform related
information chroma phase shifts relative to luma and frame
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rate. HRD includes video buffering parameters for the coded
video sequences. Bitstream restriction information includes
restrictions on motion vector range, decoded picture buffer
(DPB) size, and number of reordering frames and the coded
sizes of blocks (e.g., macroblocks or coding units (CUs))
and pictures.

HEVC WDS includes the support adaptation parameter
set (APS). The concept of adaption parameter set (APS) can
also be found in JCTVC-F747, available from http://
phenix.int-evry.fr/jct/doc_end_user/documents/6_Torino/
wgll/JICTVC-F747-v4.zip.

A unified NAL unit header may be used for both the
HEVC non-scalable bitstreams as well as the scalable bit-
streams conforming to the potential scalable or multiview
extensions of HEVC. A unified NAL unit header may differ
from the current HEVC NAL unit header in the following
aspects: there may be a fixed NAL unit header length for one
whole coded video sequence, while the length can vary
across different coded video sequences, and efficient coding
of the scalability syntax elements in the NAL unit header,
and when a particular syntax element it is not needed it need
not be present. In such a design, a different NAL unit type
or parameter set can be used for the whole bitstream.

FIG. 5 is a conceptual diagram illustrating a video param-
eter set (VPS) and various layer parameter sets (LPSs). The
ellipses following the second LPS in FIG. 5 are intended to
indicate that there may be any number N of VPSs, where N
is an integer. For example, each layer (e.g., each SVC layer
or each MVC view) may have a corresponding LPS. A video
coder, such as video encoder 20 or video decoder 30, may be
configured to code a VPS and one or more LPSs, such as
those illustrated in FIG. 5.

Table 2 below provides an example raw byte sequence
payload (RBPS) syntax for a VPS.

TABLE 2
video__parameter__set__rbsp( ) { Descriptor
video__para_ set_id u(8)
// sample dimension counter description
cnt_p u(3)
cnt_d u(3)
cnt_t u(3)
cnt_q u(3)
cnt_v u4)
cnt_f u4)

// sample index to characteristic mapping
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TABLE 2-continued
video__parameter_set__rbsp( ) { Descriptor
for(i=0;i<cnt_d;i++) {
pic_width_in_ luma_ samples[ i ] ue(v)
pic_height in luma_samples[ i ] ue(v)
bit_ depth_ luma_ minus8[ i ] ue(v)
bit_ depth_ chroma_minus8[ i ] ue(v)
chroma_ format_ide[ i ] u(2)
for(i=0;i<ecnt_t; i++)
averge_ frame_ rate[ i ] u(16)
iflent_v>1)
for( i=0; i < cnt_v; i++)
view_id[ 1] ue(v)
// control parameters and tool enabling/disabling flags
log2_max_ pic_order_cnt_lsb_minus4 ue(v)

chroma_ pred_ from_ luma_ enabled_ flag
loop__filter__across_slice_ flag
sample__adaptive__offset__enabled_ flag
adaptive__loop_ filter enabled_ flag
pem__loop_ filter_ disable_ flag
cu_qp_delta_ enabled_ flag
temporal__id_ nesting flag
inter_ 4x4__enabled_ flag
operation__point_ desription( )
vps__extension_ flag
if( vps__extension_ flag )
while( more_ rbsp_ data( ) )

vps__extension_ data_ flag

rbsp__trailing  bits( )

}

u(1)
u(1)
u(1)
u(1)
u(1)
u(1)
u(1)
u(1)

u(l)

u(1)

Video coders may be configured such that a coded video
sequence (e.g., a bitstream including one or more layers) can
only have one active video parameter set (VPS). The VPS
may be encapsulated within a NAL unit of a particular type.
For example, the nal_unit_type for a VPS RBSP may be 10.
Example semantics for the VPS of Table 2 are described
below:

In this example, video_para_set_id identifies a corre-
sponding video parameter set (VPS).

In this example, cnt_p specifies the maximum number of
priority_id values present in the corresponding coded video
sequence.

In this example, cnt_d specifies the maximum number of
dependency layers present in the corresponding coded video
sequence. Multiple views with the same resolution may be
considered as belonging to a same dependency layer. Two
dependency layers may have a same spatial resolution.

In this example, cnt_t specifies the maximum number of
temporal layers present in the coded video sequence.

In this example, cnt_q specifies the maximum number of
quality layers present in a dependency layer in the coded
video sequence.

In this example, cnt_v specifies the maximum number of
views present in the coded video sequence.

In this example, cnt_{ specifies the number of bits used to
represent the reserved_flags syntax element in the NAL unit
header.

In this example, pic_width_in_luma_samples[i] and
pic_height_in_luma_samples[i] specify, respectively, the
width and height of the i-th dependency layer resolution in
units of luma samples.

In this example, bit_depth_luma_minus8[i] plus 8 and
bit_depth_chroma_minus8[i] plus 8 specifies the bit depth
of the luma and chroma components of the i-th bit depth
representation.

In this example, chroma_format_idc[i] specifies the
chroma sample format of the i-th chroma sample format
representation. For example, a value equal to O may indicate
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4:2:0; a value equal to 1 may indicate 4:4:4, a value equal
to 2 may indicate 4:2:2 and a value equal to 3 may indicate
4:0:0.

In this example, average_frame_rate[i] specifies the aver-
age frame rate of the i-th temporal layer representation, in in
units of frames per 256 seconds.

In this example, view_id[i] specifies the view identifier of
the i-th view, which has view order index equal to i. When
not present, the value of view_id[0] may be inferred to be 0.
vps_extension_flag equal to 0 specifies that no vps_exten-
sion_data_flag syntax elements are present in the video
parameter set RBSP syntax structure. vps_extension_flag
may be equal to 0 in bitstreams conforming to the upcoming
HEVC standard. The value of 1 for vps_extension_flag may
be reserved, e.g., for future use by ITU-TIISO/IEC. Decod-
ers, such as video decoder 30, may ignore all data that follow
the value 1 for vps_extension_flag in a video parameter set
NAL unit.

In this example, vps_extension_data_flag may have any
value. It does not affect the conformance to profiles specified
in the upcoming HEVC standard, but allows for further
development of the upcoming standard.

Other syntax elements in the VPS may have the same
semantics as the syntax elements with the same names in the
SPS of the current HEVC working draft. Those syntax
elements may apply to the coded video sequence that refers
to this VPS, unless overwritten by lower level parameter
sets.

In some examples, a 3DV _flag may be further signaled in
the VPS to indicate if the depth is present in the coded video
sequence.

In some examples, VUI parameters are signaled in the
LPS.

In some examples, the syntax eclements cnt_p, cnt_t,
cnt_d, cnt_q, and cnt_v specify the numbers of bits used to
code priority_id, temporal_id, dependency_id, quality_id
and view_idx, respectively, and the maximum numbers of
priority_id values, temporal layers, dependency layers, qual-
ity layers, and views present in the coded video sequences
are may also be signaled in the VPS.

In some examples, another type of NAL unit may be
introduced to contain the syntax elements cnt_p, cnt_t,
cnt_d, ent_q, cnt_v and cnt_f. This new NAL unit type may
also include an identifier (ID), and the ID may be referred to
in the VPS.

In some examples, the syntax elements from log
2_max_pic_order_cnt_lsb_minus4 to inter_4x4
enabled_flag in Table 2 are not signaled in the VPS, but
instead, video encoder 20 and video decoder 30 may code
these syntax elements in the LPS.

In some examples, the operation_point_desription( ) syn-
tax structure of Table 2 is not included in the VPS; instead,
video encoder 20 and video decoder 30, or other elements
(e.g., output interface 22 and/or input interface 28), may
code the content in the operation_point_desription( ) syntax
structure in a supplemental enhancement information (SEI)
message.

In some examples, video encoder 20 and/or video decoder
30 may code video usability information (VUI) parameters
in the VPS. For example, a VPS may include data specifying
bitstream restriction information, such as restrictions on
motion vector range, DPB size, number of reordering
frames, and coded sizes of blocks (e.g., macroblocks or
CUs) and pictures. In this manner, a VPS may specify
information indicating a required DPB size in order for a
video decoder (such as video decoder 30) to properly decode
a corresponding bitstream, that is, a bitstream including the
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VPS. Likewise, a VPS may specify picture reordering infor-
mation, that is, a number of pictures that may precede a
given picture in decoding order and that succeed the given
picture in output order (that is, display order).

Additionally or alternatively, a VPS may include data
specifying hypothetical reference decoder (HRD) informa-
tion. As noted above, video encoder 20 and/or video decoder
30 may code (that is, signal) VUI parameters, which may
include HRD information, in the VPS. Thus, a VPS may
include data describing, for example, operation points of a
corresponding bitstream. For example, a VPS may include
data describing one or more of a number of maximum
operation points, dependencies between different layers or
views, profile and level information for each operation point,
operation point VCLL NAL unit representation for each
operation point, bit rate for each operation point, depen-
dency between operation points, restrictions for each opera-
tion point, VUI or partial VUI for each operation point,
and/or VUI or partial VUI for each layer or view.

A VPS may also include, for each dimension: a specific
index value, a range of index values, or a list of index values.
For example, when a VPS includes data describing a specific
index value, the index value may correspond to, for spatial
resolution, bit depth for chroma sampling format. As another
example, when a VPS includes a range of index values, for
temporal layers, the range may comprise zero (0) to the
highest temporal layer ID, and for quality layers, the range
may comprise zero (0) to the highest quality layer ID. As still
another example, when a VPS includes data describing a list
of index values, the list may comprise a list of view index
values for multiple views.

In some examples, video encoder 20 may encode (that is,
signal), and video decoder may decode, one or more repre-
sentation format parameters (width, height, bit depth etc.),
and there may be different sets of representation format
parameters. A layer or operation point may then refer to an
index of such a set of representation format parameters. An
example of the syntax design for such a set is shown in Table
3 below.

TABLE 3
num_rep_formats_minusl ue(v)
for(i=0;i<=num_rep_formats_minusl; i++ ) {

pic_width_in_luma samples[ i ] ue(v)

pic_height in luma samples[ i ] ue(v)

bit_depth_luma_minus8[ i ] ue(v)

bit_depth_chroma_minusg[ i ] ue(v)

chroma_format_idc[ i ] u(2)
for(i=0;i<cntd;i++) {

rep_format_idx[ i ] ue(v)

In some examples, the ref format_idx may instead be
signaled in the layer parameter set.

Table 4 below provides example syntax for operation
point descriptions.

TABLE 4
De-
operation_points_description( ) { scriptor

num_operation_point_minus1 ue(v)
for( i = 0; i <= num_operation_points_minus1; i++ ) {

op_profile_level ide[ i ] u(24)

operation_point_id[ i ] ue(v)

priority_id[ i ] ue(v)

temporal_id[ i ] ue(v)
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TABLE 4-continued

De-

operation_points_description( ) { scriptor

ue(v)
ue(v)

quality_id[ i ]
dependency_id[ i ]
if (ent_v > 1) {
num_target_output_views_minus1[ i ]
for( j = 0; j <= num_target_output_views_minusl[ i ];
J++)
view_idx[i ][] ]

ue(v)

ue(v)

u(l)
u(16)
u(16)
u(16)
u(2)

frm_rate_info_present_flag[ i ]
avg bitrate[ i ]
max_bitrate[ i ]
max_bitrate_calc_window[ i ]
constant_frm_rate_idc[ i ]
if (ent_v >1) {
num_directly_dependent_views[ i ]
for( j = 0; j < num_directly_dependent_views[ i ];
i+ 4
directly_dependent_view_idx[ i ][ j ]

if ent. v>1)
for(i=1;i<cntv;i++) {
num_ref views[ i]
for( j = 0; j < num_ref_views[ i ]; j++ )
ref_view_idx[ 1 ][] ]

ue(v)

ue(v)

Examples of the semantics for the syntax elements of
Table 4 are discussed below:

In this example, num_operation_point_minusl plus 1
specifies the maximum number of operation points that are
present in the coded video sequence and for which the
operation point information is signaled by the following
syntax elements.

In this example, op_profile_level_idc[i], operation_
point_id[i], priority_id[i], num_target_output_views_mi-
nuslli], frm_rate_info_present_flag[i], avg bitrate[i],
max_bitrate[i], —max_bitrate_calc_window[i], constant_
frm_rate_idc[i] and num_directly_dependent_views[i] may
have the same semantics as the syntax elements with the
same names in view scalability information SEI message of
H.264.

In this example, quality_id[i] and dependency_id[i] may
have the same semantics as the syntax elements with the
same names in scalability information SEI message of
H.264.

In this example, directly_dependent_view_idx][i][j] speci-
fies the view index of the j-th view that the target output
view of the current operation point is directly dependent on
within the representation of the current operation point.

In this example, num_ref views][i] specifies the number
of view components for inter-view prediction in the initial
reference picture list RefPicList0 and RefPicListl in decod-
ing view components with view order index equal to i. In
this example, the value of num_ref views[i] shall not be
greater than Min(15, num_views_minusl). In some
examples, the value of num_ref views[0] is equal to 0.

In this example, ref view_idx[i][j] specifies the view
order index of the j-th view component for inter-view
prediction in the initial reference picture list RefPicList0 and
RefPicListl in decoding a view component with view order
index equal to i. In this example, the value of ref_view_idx
[1][j] shall be in the range of 0 to 31, inclusive.

In some examples, as an alternative, some of the syntax
elements in the scalability information SEI message (e.g., as
described in H.264), for example, the layer dependency
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information related syntax elements, may be included in the
operation_points_description( ) syntax structure of Table 4.

In some examples, video encoder 20 and/or video decoder
30 may code (that is, signal) some VUI parameters in the
operation_points_description( ) syntax structure of Table 4.

Table 5 below provides alternative syntax for a video
parameter set:

TABLE 5
video_parameter_set_rbsp( ) { Descriptor
video_parameter_set_id ue(v)
num_temporal_layers_minus1 u(3)
for (i = 0; i <= num_temporal_layers_minusl; i++ ) {
profile_ide[ i ] u(8)
reserved_zero_8bits[ i ] /* equal to 0 */ u(8)
level_ide[ i ] u(8)
bit_depth_luma_minus8 ue(v)
bit_depth_chroma_minus8 ue(v)
chroma_format_idc u(2)
pic_width_in_luma_ samples ue(v)
pic_height in_luma_samples ue(v)
pic_cropping_flag u(l)
if( pic_cropping_flag ) {
pic_crop_left_offset ue(v)
pic_crop_right_offset ue(v)
pic_crop_top_offset ue(v)
pic_crop_bottom_offset ue(v)
temporal_id_nesting flag u(l)
bit_equal_to_one /* equal to 1 */ u(l)
extension_type /* equal to 0 for 3DV */ ue(v)
num_layers_minus2 ue(v)
num_rep_formats_minusl ue(v)
for( i=1; i <= num_rep_formats_minusl; i++ ) {
bit_depth_luma minus8[ i ] ue(v)
bit_depth_chroma_minusg[ i ] ue(v)
chroma_format_idc[ i ] u(2)
pic_width_in_luma samples[ i ] ue(v)
pic_height in_luma samples[ i ] ue(v)
pic_cropping_flag[ i ] u(l)
if( pic_cropping_flag[ i ]) {
pic_crop_left_offset[ i ] ue(v)
pic_crop_right_offset[ i ] ue(v)
pic_crop_top_offset[ i ] ue(v)
pic_crop_bottom_offset[ i ] ue(v)
)
for(i=1; i <= num_layers_minusl; i++ ) {
rep_format_idx[ i] ue(v)
if( extension_type = = 1) {
dependency_id[ i ] ue(v)
quality id[ i ] ue(v)
num_directly_dependent_layers[ i ] ue(v)
for( j = 0; j < num_directly_dependency_layers[ i ];
I++)
delta_reference_layer_id_minusl[i ][] ] ue(v)
¥
¥
num_short_term_ref_ pic_sets ue(v)
for( i=0; i< num_short term_ref pic_sets; i++)
short_term_ref pic_set( i)
if ( extension_type ==0)
view_dependency( )
num_additional_profiles_levels_minusl ue(v)
for( i = 0; i <= num_additional profiles_levels_minusl;
i++) {
additional_profile_idc[ i ] u(8)
additional reserved_zero_8bits[ i ] /* equal to 0 */ u(8)
additional level idc[ i ] u(8)
num_applicable_operation_points_minus1[ i ] ue(v)

for( j = 0; j <= num_applicable_operation_points[ i ];
i+ 4
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TABLE 5-continued
video_parameter_set_rbsp( ) { Descriptor
temporal_id[ 1 ][] ] ue(v)
layer_id[i ][] ] ue(v)
if( extension_type = = 0 ) { /* Always true for 3DV */
depth_included_flag u(l)
num_target_output_views_minus1[ i ][] ] ue(v)
for( k = 0;
k < num_target_output_views_minusl[ i ][] ];
k++)
layer_id[ 1 ][] ][ k] ue(v)
else (extension_type = = 1)
layer_id[i ][] ] ue(v)
¥
vps_vui_parameters_present_flag u(l)
if( vps_vui_parameters_present_flag )
vps_vui_parameters( )
vps_extension_flag u(l)
if( vps_extension_flag )
while( more_rbsp_data( ) )
vps_extension_data_flag u(l)

rbsp_trailing_bits( )

}

Examples of the semantics for the syntax of the video
parameter set of Table 5 are discussed below. In general,
similarly named syntax elements that are not discussed
below may have the same semantics as discussed above with
respect to Table 2. Semantics for other syntax elements may
be as follows:

In this example, bit_equal_to_one is equal to 1 (that is, a
binary “1” value).

In this example, extention_type equal to 0 indicates that
multiple view layers may be present in the bitstream. In this
example, extension_type equal to 1 specifies that multiple
dependency and/or quality layers may be present in the
bitstream.

In this example, num_rep_formats_minus1 plus 1 speci-
fies the maximum number of different sets representation
formats supported by this video parameter set, a represen-
tation format include bit depth and chroma format (i.e., the
sets of bit_depth_luma_minus8, bit_depth_chroma_minus8,
and chroma_format_idc values), picture resolution and crop-
ping window information in the coded video sequence. The
value of num_rep_formats_minus1 may be in the range of 0
to X, inclusive. Video encoder 20 and video decoder 30 may
code the set of bit depth and chroma format for the base layer
by bit_depth_luma_minus8, bit_depth_chroma_minus8, and
chroma_format_idc, and sets of bit depth and chroma format
are signaled for enhancement layers by the following set of
syntax elements bit_depth_luma_minus8[i], bit_depth_
chroma_minus8][i], and chroma_format_idc[i].

Video encoder 20 and video decoder 30 may code the first
set of representation format by bit_depth_luma_minus8,
bit_depth_chroma_minus8, chroma_format_idc,
pic_width_in_luma_samples, pic_height_in_luma_samples,
pic_cropping flag, pic_crop_left_offset, pic_crop_right_
offset, pic_crop_top_offset, and pic_crop_bottom_offset.

In this example, bit_depth_luma_minus§][i],
bit_depth_chroma_minus8[i], and chroma_format_idc[i]
specify, respectively, the i-th set of bit_depth_luma_minus8,
bit_depth_chroma_minus8, and chroma_format_idc_values
in the coded video sequence.

In this example, pic_width_in_luma_samples[i] and
pic_height_in_luma_samples[i] specify, respectively the
width and height of each decoded picture in units of luma
samples using the i-th representation format.
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In this example, pic_cropping flag[i] pic_crop_left_oft-
set[i], pic_crop_right_offset[i], pic_crop_top_offset[i], and
pic_crop_bottom_offset[i] specify, for the i-th set of repre-
sentation format, the samples of the pictures in the coded
video sequence that are output from the decoding process, in
terms of a rectangular region specified in picture coordinates
for output.

In this example, rep_format_idx[i] specifies the values
index to the set of additional bit depth and chroma format
that applies to the layer with layer_id equal to i. The values
of bit_depth_luma_minus8, bit_depth_chroma_minus8, and
chroma_format_idc for the layer with layer_id equal to i
may be equal to bit_depth_luma_minus8|[rep_format_idx
[i]], bit_depth_chroma_minus8[rep_format_idx[i]], and
chroma_format_idc[rep_format_idx[i]], respectively. The
value of rep_format_idx[i] shall be in the range of 0 to X,
inclusive.

In this example, dependency_id[i] specifies a dependency
identifier for the layer with layer_id equal to i. dependen-
cy_id[i] may be in the range of 0 to X inclusive. When not
present, dependency_id[i] may be inferred to be 0. When
num_directly_dependent_layers[i] is greater than 0, depen-
dency_id[i] may be equal to or greater than the dependency
identifier of any layer the layer with layer_id equal to i
depends on.

In this example, quality_id[i] specifies a equality identi-
fier for the layer with layer_id equal to i. quality_id[i] may
be in the range of 0 to X inclusive. When not present,
quality_id[i] may be inferred to be 0. When num_direct-
ly_dependent_layers[i] is greater than 0, quality_id[i] may
be equal to or greater than the quality identifier of any layer
that the layer with layer_id equal to i depends on and that has
dependency identifier equal to dependency_id[i].

In this example, num_short_term_ref pic_sets specifies
the number of short-term reference picture sets that are
specified in the video parameter set. The value of
num_short_term_ref pic_sets may be in the range of 0 to 64,
inclusive.

In this example, depth_included_flag equal to 1 indicates
that the current 3DV operation point contains depth. In this
example, depth_included_flag equal to O indicates that the
current 3DV operation point does not contain depth.

Example syntax for the view dependency element of
Table 5 are provided in Table 6 below:

TABLE 6

view_dependency( ) {
num_views_minusl
for( i =0; i <= num_views_minusl; i++ )
view_id[ i ]
for( i =1;i<=num_views_minusl; i++ ) {
num_ref views[ i ]
for(j =0; j < num_ref views[ i ]; j++ )
ref_view_idx[ i ][] ]
inter_view_texture_flag[ i ][] ]

ue(v)

ue(v)

ue(v)

u(l)

Table 7 below defines an example set of data in which the
view dependency of each non-base view is directly signaled
in the sequence level.

TABLE 7

for(i=1;i <= num_views_minusl; i++ ) {
num_ref views[ i ]
for( j =0; j < num_ref views[ i ]; j++ )

ue(v)
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TABLE 7-continued

ref_view_idx[ 1 ][] ] ue(v)

}

In this example, num_ref views][i] specifies the number
of view components for inter-view prediction in the initial
reference picture list RefPicList0 and RefPicListl in decod-
ing view components with view order index equal to i. In
this example, the value of num_ref views[i] is not greater
than Min(15, num_views_minusl). In this example, the
value of num_ref_views[0] is equal to O.

In this example, ref view_idx[i][j] specifies the view
order index of the j-th view component for inter-view
prediction in the initial reference picture list RefPicList0 and
RefPicListl in decoding a view component with view order
index equal to i. In this example, the value of ref_view_idx
[1][7] is in the range of 0 to 31, inclusive.

As noted above, a particular type of NAL unit (e.g., NAL
unit type 10) may be used to encapsulate a video parameter
set. The NAL unit syntax may be modified as shown in the
example of Table 8 below.

TABLE 8

nal_unit( NumBytesInNALunit ) { Descriptor

forbidden_zero_bit
nal_ref flag
nal_unit_type
NumBytesInRBSP = 0
nalUnitHeaderBytes = 1
if( nal_unit_type !=10) { // not VPS NAL unit
if(entp>1)
priority_id
if(ent t>1)
temporal_id
reserved_one_bit
if(lent.d>1)
dependency_id
if(ent g >1)
quality_id
reserved_one_bit
if(ent v>1)
view_idx
if( ent_f)
reserved_flags
m = Ceil( log2(cnt_p) )+ Ceil( log2(cnt_t) ) +
Ceil( log2(ent_d) ) + Ceil( log2(cnt_q) ) +
Ceil( log2(ent_v) ) + cnt_f+ 2
f(((m+7>>3)<<3)-m)
reserved_bits
nalUnitHeaderBytes += ((m + 7 ) >>3)

f(1)
u(l)
u(6)

u(v)

u(v)
u(1)

u(v)

u(v)
u(l)

u(v)

u(v)

u(v)

for( i = nalUnitHeaderBytes; i < NumBytesInNALunit;
i++) {
if( 1+ 2 < NumBytesInNALunit && next_bits( 24 ) = =
0x000003 ) {
rbsp_byte[ NumBytesInRBSP++ |
rbsp_byte[ NumBytesInRBSP++ |
i+=2
emulation_prevention_three_byte /* equal to 0x03 */
} else
rbsp_byte[ NumBytesInRBSP++ |

b(8)
b(8)

f(8)

b(8)

In this example, elements within the “if(nal_unit_
type!=10)" statement are added, relative to the conventional
NAL unit syntax. In this example, the number of bits used
to signal the syntax elements priority_id, temporal_id,
dependency_id, quality_id and view_idx is Ceil(log
2(cnt_p)), Ceil(log 2(cnt_t)), Ceil(log 2(cnt_d)), Ceil(log
2(cnt_q)) and Ceil(log 2(cnt_v)), respectively. Likewise, in
this example, when any of the syntax elements priority_id,
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temporal_id, dependency_id, quality_id and view_idx is not
present, the value of that syntax element is inferred to be
equal to 0.

Except as defined above with respect to the number of bits
and the inferences that may be drawn, semantics for the
syntax elements of Table 8 may be defined as follows. The
semantics of priority_id, dependency_id, and quality_id
may be as defined in the SVC extension of ITU-T H.264/
AVC. The semantics of temporal_id may be as defined in
WD4 of HEVC. In this example, reserved_one_bit is equal
to 1. The value O for reserved_one_bit may be specified by
future extensions of the HEVC standard. Decoders, such as
video decoder 30, may be configured to ignore the value of
reserved_one_bit.

In this example, view_idx specifies the view order index
for a view. The semantics of view_idx may be the same as
the syntax element “view order index” as specified in the
MVC extension of ITU-T H.264/AVC.

In this example, each bit of reserved_flags is equal to 1.
Other values for reserved_flags may be specified by future
extensions of the upcoming HEVC standard. Decoders, such
as video decoder 30, may be configured to ignore the value
of reserved_flags, unless configured to operate in accor-
dance with an extension that assigns semantics to bits of
reserved_flags. In this example, the number of bits used to
represent reserved_flags is reserved_flags_len.

In this example, each bit of reserved_bits is equal to 1.
Other values for reserved_bits may be specified by future
extension of the upcoming HEVC standard. Decoders, such
as video decoder 30, may be configured to ignore the value
of reserved_bits, again unless configured in accordance with
such a future extension. The number of bits used to represent
reserved_bits, in this example, is ((m+7>>3)<<3)-m.

Table 9 below provides example syntax for a layer param-
eter set. The same syntax may be used for each of the LPSs
of FIG. 5, in some examples.

TABLE 9
layer_para_set( ) { Descriptor
depth_flag u(l)
layer_para_set_id ue(v)
vps_id ue(v)
// cu hierarchy {{
log2_min_coding block_size minus3 ue(v)
log2_diff max_min_coding block size ue(v)
log2_min_transform_block_size minus2 ue(v)
log2_diff max_min_transform_block size ue(v)
log2_min_pcm_coding block size minus3 ue(v)
max_transform_hierarchy_depth_inter ue(v)
max_transform_hierarchy_depth_intra ue(v)
// cu hierarchy }}
pem_bit_depth_luma_minusl u4)
pem_bit_depth_chroma_minus1 u4)
loop_filter_across_slice_flag u(l)
sample_adaptive_offset_enabled_flag u(l)
adaptive_loop_filter_enabled_flag u(l)
pem_loop_filter_disable_flag u(l)
cu_qp_delta_enabled_flag u(l)
/ftiles
num_tile_columns_minusl ue(v)
num_tile rows_minusl ue(v)

if (num_tile_columns minusl =0 ||
num_tile_rows_minus1 != 0) {
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TABLE 9-continued

layer_para_set( ) { Descriptor

u(l)
u(1)

tile_boundary_independence_idc
uniform_spacing_ide
if (uniform_spacing_ide 1= 1) {
for (i=0; i<num_tile_columns_minusl ; i++)
column_width[i]
for (i=0; i <num_tile_rows_minusl; i++)
row_height[i]

ue(v)
ue(v)

¥
Ips_extension_flag
if( Ips_extension_flag )
while( more_rbsp_data( ) )
Ips_extension_data_flag
rbsp_trailing_bits( )

u(l)

u(1)

Examples of the semantics for the LPS syntax of Table 9
are described below. Different layers (e.g., different views in
MVC or different layers in SVC) may refer to different
LPSs. Different quality layers in a same dependency layer
may share the same LPS. Different temporal layers in a same
dependency layer may share the same LPS. Alternatively,
different views may refer to a same LPS, and different
dependency layers may refer to a same LPS.

In this example, depth_flag equal to 1 specifies that the
LPS applies to the depth representations identified by the
values of temporal_id, dependency_id, quality_id and
view_idx of the LPS NAL unit. Depth_flag equal to 0
specifies that the LPS applies to the texture representations
identified by the values of temporal_id, dependency_id,
quality_id and view_idx of the LPS NAL unit.

In this example, layer_para_set_id specifies the id of the
current layer parameter set (LPS). Different layer parameter
sets with the same values of dependency_id and view_idx,
respectively, share one value space for layer_para_set_id,
meaning that different LPSs with different combination of
depencey_id and view_idx may have the same value of
layer_para_set_id.

Alternatively, all LPSs may share the one value space,
meaning that each LPS has a distinct value of
layer_para_set_id.

In this example, vps_id identifies the video parameter set
to which this layer parameter set refers.

In this example, lps_extension_flag equal to 0 specifies
that no lps_extension_data_flag syntax elements are present
in the layer parameter set RBSP syntax structure. In this
example, lps_extension_flag may be equal to 0 in bitstreams
conforming to the upcoming HEVC standard. The value of
1 for lps_extension_flag is reserved for future use by ITU-
TIISO/IEC. Decoders, such as video decoder 30, may ignore
all data that follow the value 1 for Ips_extension_flag in a
layer parameter set NAL unit.

In this example, Ips_extension_data_flag may have any
value, and does not affect the conformance to profiles
specified in the upcoming HEVC standard.

Other syntax elements may have the same semantics as
the syntax elements with the same names in the SPS of the
HEVC WD, but applying only to pictures referring to this
LPS.

An LPS may be contained in a NAL unit, the header of
which may be defined according to Table 8 above. The
following syntax elements have the following slightly modi-
fied semantics when they are associated with an LPS.

In this example, priority_id is equal to the minimum value
of'the priority_id values of all the NAL units referring to this
LPS.
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In this example, temporal_id is equal to the minimum
value of the temporal_id of all the NAL units referring to this
LPS.

In this example, dependency_id is equal to the dependen-
cy_id of all the NAL units referring to this LPS.

In this example, quality_id is equal to the minimum value
of quality_id of all the NAL units referring to this LPS.

In this example, v_idx is the view index of the current
LPS. All pictures referring to this LPS may have a view id
of view_id[v_idx].

Alternatively, the above syntax elements may be directly
signaled in the layer parameter set syntax table, as shown in
the example of Table 10. More detailed syntax table can be
designed according to Table 9 below. In this case, those
syntax elements are not in the NAL unit header of the LPS
and the parsing of the LPS may be dependent on the VPS
with an ID equal to vps_id.

TABLE 10
layer_para_set( ) { Descriptor

vps_id u(8)
ifl ent p>1)

priority_id u(v)
ifl ent t>1)

temporal_id u(v)
reserved_one_bit u(l)
ifl ent d>1)

dependency_id u(v)
ifl ent g>1)

quality_id u(v)
ifl ent v>1)

view_idx u(v)
depth_flag u(l)
layer_para_set_id ue(v)

// cu hierarchy {{

rbsp_trailing bits( )

}

An LPS in this case, does not need to have a NAL unit
header duplicating the above syntax elements. Assuming the
NAL unit type of a NAL unit encapsulating an LPS is, e.g.,
5, the NAL unit header syntax may be slightly modified as
shown in Table 11, which adds the exception “&& nal_
unit_type!=5" in the “if” statement of Table 8:

TABLE 11

nal_unit( NumBytesInNALunit ) { Descriptor

forbidden_zero_bit
nal_ref flag
nal_unit_type
NumBytesInRBSP = 0
nalUnitHeaderBytes = 1
if( nal_unit_type != 10 && nal_unit_type !=5)
{ // not VPS NAL unit
if(ent p>1)
priority_id
if(ent t>1)
temporal_id
reserved_one_bit
if(lent. d>1)
dependency_id
if(ent q>1)
quality_id
reserved_one_bit
if(ent v>1)
view_idx
if( ent_f)
reserved_flags
m = Ceil( log2(cnt_p) )+ Ceil( log2(ent_t) ) +
Ceil( log2(cnt_d) ) + Ceil( log2(cnt_q) ) +

f(1)
u(l)
u(6)

u(v)

u(v)
u(l)

u(v)

u(v)
u(l)

u(v)

u(v)
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TABLE 11-continued
nal_unit( NumBytesInNALunit ) { Descriptor
Ceil( log2(ent_v) ) + cnt_f+ 2
Hf(((m+7>>3)<<3)-m)
reserved_bits u(v)
nalUnitHeaderBytes += ((m + 7 ) >>3)
for( i = nalUnitHeaderBytes; i < NumBytesInNALunit;
i++) {
if( 1+ 2 < NumBytesinNALunit &&
next_bits( 24 ) = = 0x000003) {
rbsp_byte[ NumBytesInRBSP++ | b(8)
rbsp_byte[ NumBytesInRBSP++ | b(8)
i+=2
emulation_prevention_three_byte /* equal to 0x03 */  f(8)
} else
rbsp_byte[ NumBytesInRBSP++ | b(8)

In other examples, video encoder 20 and video decoder 30
may code the scalable characteristics related syntax ele-
ments using fixed length coding, as shown in the example of
Table 12 below.

TABLE 12
layer_para_set( ) { Descriptor
vps_id u(8)
priority_id u()
temporal_id u@3)
dependency_id u@3)
quality_id u@3)
view_idx u(8)
layer_para_set_id ue(v)

// cu hierarchy {{

Table 13 below provides an example of syntax for a
picture parameter set (PPS) in accordance with the tech-
niques of this disclosure. In this example, the picture param-
eter set need not signal a “seq_parameter_set_id,” contrary
to the PPS of conventional HEVC.

TABLE 13
pic_parameter_set_rbsp( ) { Descriptor
pic_parameter_set_id ue(v)

pps_extension_flag
if pps_extension_flag )
while( more_rbsp_data( ) )
pps_extension_data_flag
rbsp_trailing bits( )

u(l)

u(l)

Examples of the semantics for the PPS of Table 13 are
described below.

In this example, pps_extension_flag equal to O specifies
that no pps_extension_data_flag syntax elements are present
in the picture parameter set RBSP syntax structure. In this
example, pps_extension_flag is equal to 0 in bitstreams
conforming to the upcoming HEVC standard. The value of
1 for pps_extension_flag may be reserved for future use by
ITU-TIISO/IEC. Decoders, such as video decoder 30, may
ignore all data that follow the value 1 for pps_extension_flag
in a picture parameter set NAL unit.

In this example, pps_extension_data_flag may have any
value. It does not necessarily affect the conformance to
profiles specified in the upcoming HEVC standard. Seman-
tics for values of pps_extension_data_flag may be assigned
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in further developments of the HEVC standard or extensions
of the standard without conflicting with the techniques of
this disclosure.

In the techniques of this disclosure, no sequence param-
eter set id or layer parameter set id needs to be signaled in
the PPS. Some other syntax elements in PPS may be moved
to LPS. That is, video encoder 20 and/or video decoder 30
may be configured to code one or more LPSs including data
similar to the syntax elements shown in Table 13.

FIG. 6 is a conceptual diagram illustrating an example
grouping parameter set (GPS) and relationships of the GPS
with other parameter sets and slice headers. In this example,
the other parameter sets include LPSs, SPSs, PPSs, adapta-
tion parameter sets (APSs) of type O (e.g., APSs signaling
adaptive loop filter (ALF) parameters), APSs of type 1 (e.g.,
APSs signaling a quantization matrix), and other parameter
sets. In this example, the GPS includes a plurality of
different groups, each having a unique GPS ID (also referred
to as a group ID), where each group indicates a particular
one of each of the various parameter sets by parameter set
ID. In this manner, slice headers need only specify a
group_id to specify each of the parameter sets corresponding
to the group having that group_id.

Tables 14 and 15 below provide alternative examples of
syntax for a grouping parameter set RBSP.

TABLE 14
De-
group_para_set_rbsp( ) { scriptor
number_signaled_para_set_groups_minus1 ue(v)
for( i = 0; i<= number_signaled_para_set_groups_minusl;
i++) {
para_set_group_id[ i ] ue(v)
Ips_id[ i ] ue(v)
pps_id[i] ue(v)
for (j= 0; j< numParaSetTypes; j++)
para_set_type_id[ 1 ][] ]
gps_extension_flag u(l)
if( gps_extension_flag )
while( more_rbsp_data( ) )
gps_extension_data_flag u(l)
rbsp_trailing_bits( )
¥
TABLE 15
De-
group_para_set_rbsp( ) { scriptor
number_signaled_para_set_groups_minus1 ue(v)
for( i = 0; i<= number_signaled_para_set_groups_minusl;
i++) {
para_set_group_id[ i ] ue(v)
Ips_id[ i ] ue(v)
pps_id[i] ue(v)
aps_id[ 1] ue(v)

gps_extension_flag
if( gps_extension_flag )
while( more_rbsp_data( ) )
gps_extension_data_flag
rbsp_trailing_bits( )

u(l)

u(l)

Video coders, such as video encoder 20 and video decoder
30, may be configured to code a grouping parameter set in
accordance with, e.g., Table 14 or Table 15. Examples of
semantics for the syntax of the grouping parameter sets are
provided below.
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In this example, number_signalled_para_set_groups_mi-
nusl plus 1 specifies the number of parameter groups
signaled. This value may be in the range of 0 to 30,
inclusive.

In this example, para_set_group_id[i] specifies the ID of
the i-th signalled parameter set group. The value of para_
set_group_id[i] shall be in the range of 0 to 31, inclusive.

In this example, para_set_type_id[i][j] specifies the ID of
the j-th parameter set type for the i-th parameter set group.

In this example, Ips_id[i] indicates the id of the layer
parameter set referred by the parameter set group with a
group id of para_set_group_id[i]. The values of dependen-
cy_id and view_idx of an LPS with layer_para_set_id equal
to lps_id[i] may be identical to the values of dependency_id
and view_idx, respectively, of the parameter set group NAL
unit.

The values of dependency_id and view_idx of a param-
eter set grouping RBSP are present in the NAL unit header
of this RBSP in the examples of Tables 14 and 15, and the
values of dependency_id and view_idx of an LPS may be
present either in the NAL unit header of this LPS or in the
syntax table of the LPS.

Alternatively, the values of dependency_id and view_idx
of'an LPS with layer_para_set_id equal to Ips_id[i] may not
be identical to the values of dependency_id and view_,
respectively, of the parameter set group NAL unit.

In this example, pps_id[i] indicates the id of the picture
parameter set referred by the parameter set group with a
group id of para_set_group_id[i].

In this example, aps_id[i] indicates the id of the adapta-
tion parameter set referred by the parameter set group with
a group id of para_set_group_id[i].

In this example, gps_extension_flag equal to O specifies
that no gps_extension_data_flag syntax elements are present
in the parameter set grouping RBSP syntax structure.
Gps_extension_flag may be equal to 0 in bitstreams con-
forming to the upcoming HEVC standard. The value of 1 for
gps_extension_flag may be reserved for future use by ITU-
TIISO/IEC. Decoders, such as video decoder 30, may ignore
all data that follow the value 1 for gps_extension_flag in a
parameter set grouping NAL unit. In general, gps_exten-
sion_data_flag may have any value. It need not affect the
conformance to profiles specified in the upcoming HEVC
standard.

In some examples, para_set_type_id[i][j] may instead be
aps_id[i][j], with similar semantics as aps_id[i] as described
above.

As shown in FIG. 6, instead of referring to the picture
parameter set ID in the slice header, in accordance with the
techniques of this disclosure, the slice header may refer to a
parameter set group 1D, thus indirectly referring to an LPS,
a PPS and an APS of each type (e.g., APSs providing ALF
parameters and quantization matrices).

A video coder may activate a video parameter set or a
layer parameter sets when a VCL NAL unit (containing a
coded slice) refers to the parameter set, indirectly, e.g., based
on the H.264/AVC design principal.

In some examples, parameter sets can be activated by a
specific type of NAL unit, rather than by a coded slice. For
example, a NAL unit type of this specific type (parameter
sets activation NAL unit), if present in the bitstream, may
activate one, and exactly one, VPS. In various alternatives,
in addition, such a type of a NAL unit may activate at least
one LPS. In addition, such type of NAL unit may activate at
least one PPS. In addition, such type of NAL unit may
activate at least one APS. A parameter sets activation NAL
unit can be a grouping parameter set RBSP. A parameter sets
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activation (PSA) NAL unit may be applicable to one coded
video sequence. A PSA NAL unit may be considered a
non-VCL NAL unit, that is, not directly relevant to a video
coder. The NAL unit header syntax of the PSA NAL unit
may be the same as a VPS NAL unit.

In some examples, a PSANAL unit, if present in an access
unit, may precede the first VCL NAL unit of the access unit.
There may be at least one PSA NAL unit in the first access
unit of a coded video sequence, e.g., an IDR picture.
Multiple PSA NAL units in the same coded video sequence
may contain the same VPS id; thus, no different video
parameter sets need to be activated within the same coded
video sequence. A PSA NAL unit, if present in an access
unit, may precede any LPS, PPS; APS, or SEI NAL unit, if
present. A VPS NAL unit, if present in an access unit, may
precede any LPS, PPS, APS, or SEI NAL unit, if present. In
various alternatives, in addition, a PSA NAL unit, if present
in an access unit, may precede a VPS NAL unit, if present.

In some examples, video coders, such as video encoder 20
and video decoder 30, may be configured to utilize the
syntax of Table 16 for a sequence parameter set (SPS), as
opposed to the conventional SPS syntax of, e.g., HEVC.

TABLE 16
seq_parameter_set_rbsp( ) { Descriptor

video_parameter_set_id ue(v)
rep_format_idx ue(v)
pem_enabled_flag u(l)
if( pem_enabled_flag ) {

pem_bit_depth_luma_minusl u4)

pem_bit_depth_chroma_minusl u4)
¥
qpprime_y_zero_transquant bypass_flag u(l)
log2_max_pic_order_cnt_Isb_minus4 ue(v)
for( i = 0; i <= max_temporal_layers_minusl; i++ ) {

max_dec_pic_buffering[ i ] ue(v)

num_reorder_pics[ i ] ue(v)

max_latency_increase[ i ] ue(v)
¥
restricted_ref pic_lists_flag ul)
if( restricted_ref pic_lists_flag )

lists_modification_present_flag ul)
log2_min_coding block_size minus3 ue(v)
log2_diff max_min_coding_block size ue(v)
log2_min_transform_block_size minus2 ue(v)
log2_diff max_min_transform_block_size ue(v)
if( pem_enabled_flag ) {

log2_min_pcm_coding block_size_minus3 ue(v)

log2_diff max_min pcm_coding block_size ue(v)
¥
max_transform_hierarchy_depth_inter ue(v)
max_transform_hierarchy_depth_intra ue(v)
scaling_list_enable_flag
chroma_pred_from_luma_enabled_flag u(l)
deblocking_filter_in_aps_enabled_flag u(l)
seq_loop_filter_across_slices_enabled_flag u(l)
asymmetric_motion_partitions_enabled_flag u(l)
non_square_quadtree_enabled_flag u(l)
sample_adaptive_offset_enabled_flag u(l)
adaptive_loop_filter_enabled_flag u(l)
if( adaptive_loop_filter_enabled_flag )

alf_coef_in_slice_flag u(l)
if( pem_enabled_flag )

pem_loop_filter_disable_flag u(l)
temporal_id_nesting flag u(l)
if( log2_min_coding block_size_minus3 ==0)

inter_4x4_enabled_flag u(l)
long_term_ref_pics present flag u(l)
tiles_or_entropy_coding_sync_ide u(2)

if( tiles_or_entropy_coding_sync_idc == 1) {
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TABLE 16-continued
seq_parameter_set_rbsp( ) { Descriptor
num_tile_columns_minus1 ue(v)
num_tile_rows_minusl ue(v)
uniform_spacing flag u(l)
if( tuniform_spacing_flag ) {
for( i=0;i < num_tile_columns_minusl; i++ )
column_width[ i ] ue(v)
for( i=0;i < num_tile rows_minusl; i++ )
row_height[ i ] ue(v)

loop_filter_across_tiles_enabled_flag
¥
vui_parameters_present_flag
if( vui_parameters_present_flag )
vui_parameters( )
sps_extension_flag
if( sps_extension_flag )
while( more_rbsp_data( ) )
sps_extension_data_flag
rbsp_trailing_bits( )

u(l)
u(l)

u(l)

u(l)

The example SPS of Table 16 eliminates profile_idc,
reserved_zero_8 bits, level_idc, chroma_format_idc, sepa-
rate_colour_plane_flag and corresponding conditional “if,”
max_temporal_layers_minusl, pic_width_in_lu-
ma_samples, pic_height_in_luma_samples, pic_
cropping_flag, pic_crop_left_offset, pic_crop_right_offset,
pic_crop_top_offset, and pic_crop_bottom_offset and corre-
sponding conditional “if” statement, bit_depth_luma_mi-
nus§, bit_depth_chroma_minus8, num_short_term_
ref_pic_sets, and short_term_ref_pic_set(i) and correspond-
ing conditional “if” statement from the conventional SPS
syntax. Moreover, the example SPS of Table 16 adds a
video_parameter_set_id and rep_format_idx. The semantics
for the other remaining syntax elements may be the same as
defined in conventional HEVC. The semantics for the added
elements video_parameter_set_id and rep_format_idx may
be defined as follows:

In this example, video_parameter_set_id identifies the
video parameter set (VPS) referred by the current SPS.
Alternatively, video_parameter_set_id need not signaled,
and a GPS may be used to link an SPS to a specific VPS.

In this example, rep_format_idx specifies the index to the
representation format signaled in the referred video param-
eter set.

As yet another alternative, Table 17 provides another
example of syntax for a grouping parameter set. It is
assumed that, in this example, the video parameter set ID
syntax element is not present in the SPS syntax, as described
above.

TABLE 17
group_para_set_rbsp( ) { Descriptor

gps_id ue(v)
vps_id ue(v)
sps_id ue(v)
pps_id ue(v)
num_ref_aps_ids ue(v)
for(i=0; i< num_ref_aps_ids; i++ ) {

ref_aps id[ i ] ue(v)

ref_aps_param_type[ i ] ue(v)

gps_extension_flag
if( gps_extension_flag )
while( more_rbsp_data( ) )
gps_extension_data_flag
rbsp_trailing_bits( )

}

u(l)

u(l)
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The semantics for the syntax elements of Table 17 may be
defined as follows:

In this example, gps_id specifies the identifier of a group
parameter set (GPS).

In this example, vps_id specifies the identifier of the video
parameter set referred to by the GPS.

In this example, sps_id specifies the identifier of the
sequence parameter set referred to by the GPS.

In this example, pps_id specifies the identifier of the
picture sequence parameter set referred to by the GPS.

In this example, num_ref_ aps_ids specifies the number of
the following ref aps_id[i] syntax elements. The value of
num_ref_aps_ids shall be in the range of 0 to 4, inclusive.

In this example, ref_aps_id[i] identifies the i-th adaptation
parameter set referenced by the group parameter set.

The same value of the ref_aps_id[i] may be present in the
loop more than once, and thus, more than one type of APS
parameters from the same APS can be referenced by the
same GPS and may apply to coded slices referring to the
GPS.

In this example, ref_aps_param_type[i] specifies the type
of the APS parameters included in the i-th adaption param-
eter set referenced by the group parameter set. The value of
ref_aps_parame_type[i] may be in the range of 0 to 3,
inclusive. The values of 0 to 3, inclusive, for ref_aps_param-
e_typel[i] correspond to the APS parameter types of scaling
list, deblocking filter, sample adaptive offset (SAO), and
ALF, respectively. The values of ref_aps_parame_type[i] for
any two different values of i shall not be identical, in some
examples.

In this example, gps_extension_flag equal to 0 specifies
that no gps_extension_data_flag syntax elements are present
in the parameter set grouping RBSP syntax structure.
gps_extension_flag may be equal to 0 in bitstreams con-
forming to the upcoming HEVC standard. The value of 1 for
gps_extension_flag may be reserved for future use by ITU-
TIISO/IEC. Decoders, such as video decoder 30, may ignore
all data that follow the value 1 for gps_extension_flag in a
parameter set grouping NAL unit.

In this example, gps_extension_data_flag may have any
value. It need not affect the conformance to profiles specified
in the upcoming HEVC standard.

Video coders, such as video encoder 20 and video decoder
30, may apply the following process to activate parameter
sets for single-layer or single-view bitstreams, when the
GPS is specified according to Table 17, or substantially
conforms to the example of Table 17.

An adaptation parameter set RBSP may include param-
eters that can be referred to by the coded slice NAL units of
one or more coded pictures indirectly through one or more
group parameter sets referred to by the coded slice NAL
units. Each adaptation parameter set RBSP may be initially
considered not active at the start of the operation of the
decoding process. At most one adaptation parameter set
RBSP may be considered active for each type of APS
parameters at any given moment during the operation of the
decoding process, and the activation of any particular adap-
tation parameter set RBSP for a particular type of APS
parameters results in the deactivation of the previously-
active adaptation parameter set RBSP (if any) for that
particular type of APS parameters.

When an adaptation parameter set RBSP (with a particular
value of aps_id) is not active for a particular type of APS
parameters and it is referred to by a coded slice NAL unit for
that particular type of APS parameters (using that value of
aps_id) indirectly through a group parameter set referred to
by the coded slice NAL unit, it may be activated for that
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particular type of APS parameters. This adaptation param-
eter set RBSP is called the active adaptation parameter set
RBSP for that particular type of APS parameters until it is
deactivated by the activation of another adaptation param-
eter set RBSP for that particular type of APS parameters. An
adaptation parameter set RBSP, with that particular value of
aps_id, may be available to the decoding process prior to its
activation.

A picture parameter set RBSP may include parameters
that can be referred to by the coded slice NAL units of one
or more coded pictures indirectly through one or more group
parameter sets referred to by the coded slice NAL units.
Each picture parameter set RBSP may be initially considered
not active at the start of the operation of the decoding
process. At most one picture parameter set RBSP may be
considered active at any given moment during the operation
of the decoding process, and the activation of any particular
picture parameter set RBSP results in the deactivation of the
previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular
value of pic_parameter_set_id) is not active and it is referred
to by a coded slice NAL unit (using that value of pic_pa-
rameter_set_id) indirectly through a group parameter set
referred to by the coded slice NAL unit, it may be activated.
This picture parameter set RBSP is called the active picture
parameter set RBSP until it is deactivated by the activation
of another picture parameter set RBSP. A picture parameter
set RBSP, with that particular value of pic_param-
eter_set_id, may be available to the decoding process prior
to its activation.

Any picture parameter set NAL unit containing the value
of pic_parameter_set_id for the active picture parameter set
RBSP for a coded picture may have the same content as that
of the active picture parameter set RBSP for the coded
picture unless it follows the last VCL NAL unit of the coded
picture and precedes the first VCL. NAL unit of another
coded picture.

A sequence parameter set RBSP may include parameters
that can be referred to by the coded slice NAL units of one
or more coded pictures indirectly through one or more group
parameter sets referred to by the coded slice NAL units, or
can be referred to by one or more SEI NAL units containing
a buffering period SEI message. Each sequence parameter
set RBSP may be initially considered not active at the start
of the operation of the decoding process. At most one
sequence parameter set RBSP may be considered active at
any given moment during the operation of the decoding
process, and the activation of any particular sequence
parameter set RBSP results in the deactivation of the pre-
viously-active sequence parameter set RBSP (if any).

When a sequence parameter set RBSP (with a particular
value of seq_parameter_set_id) is not already active and it is
referred to by a coded slice NAL unit indirectly through a
group parameter set referred to by the coded slice NAL unit
(using that value of seq_parameter_set_id) or is referred to
by an SEI NAL unit containing a buffering period SEI
message (using that value of seq_parameter_set_id), it may
be activated. This sequence parameter set RBSP is called the
active sequence parameter set RBSP until it is deactivated by
the activation of another sequence parameter set RBSP. A
sequence parameter set RBSP, with that particular value of
seq_parameter_set_id and contained within an access unit
with temporal_id equal to 0, may be available to the decod-
ing process prior to its activation. An activated sequence
parameter set RBSP shall remain active for the entire coded
video sequence.
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A video parameter set RBSP may include parameters that
can be referred to by the coded slice NAL units of one or
more coded pictures indirectly through one or more group
parameter sets referred to by the coded slice NAL units, or
can be referred to by one or more SEI NAL units containing
a buffering period SEI message. Each video parameter set
RBSP may be initially considered not active at the start of
the operation of the decoding process. At most one video
parameter set RBSP may be considered active at any given
moment during the operation of the decoding process, and
the activation of any particular video parameter set RBSP
results in the deactivation of the previously-active video
parameter set RBSP (if any).

When a video parameter set RBSP (with a particular value
of video_parameter_set_id) is not already active and it is
referred to by a coded slice NAL unit indirectly through a
group parameter set referred to by the coded slice NAL unit
(using that value of video_parameter_set_id) or is referred to
by an SEI NAL unit containing a buffering period SEI
message (using that value of video_parameter_set_id), it
may be activated. This video parameter set RBSP is called
the active video parameter set RBSP until it is deactivated by
the activation of another video parameter set RBSP. A video
parameter set RBSP, with that particular value of video_pa-
rameter_set_id and contained within an access unit with
temporal_id equal to O, shall be available to the decoding
process prior to its activation. An activated video parameter
set RBSP shall remain active for the entire coded video
sequence.

Any sequence parameter set NAL unit containing the
value of seq_parameter_set_id for the active sequence
parameter set RBSP for a coded video sequence may have
the same content as that of the active sequence parameter set
RBSP for the coded video sequence unless it follows the last
access unit of the coded video sequence and precedes the
first VCL NAL unit and the first SEI NAL unit containing a
buffering period SEI message (when present) of another
coded video sequence.

Any video parameter set NAL unit containing the value of
video_parameter_set_id for the active video parameter set
RBSP for a coded video sequence may have the same
content as that of the active video parameter set RBSP for
the coded video sequence unless it follows the last access
unit of the coded video sequence and may precede the first
VCL NAL unit and the first SEI NAL unit containing a
buffering period SEI message (when present) of another
coded video sequence.

All constraints that are expressed on the relationship
between the values of the syntax elements (and the values of
variables derived from those syntax elements) in video
parameter sets, sequence parameter sets, picture parameter
sets and adaptation parameter sets and other syntax elements
are expressions of constraints that may apply only to the
active video parameter sets, the active sequence parameter
set, the active picture parameter set and the active adaptation
parameter set for each particular type of APS parameters. If
any video parameter set RBSP is present that is not activated
in the bitstream, its syntax elements may have values that
would conform to the specified constraints if it were acti-
vated by reference in an otherwise-conforming bitstream. If
any sequence parameter set RBSP is present that is not
activated in the bitstream, its syntax elements may have
values that would conform to the specified constraints if it
were activated by reference in an otherwise-conforming
bitstream. If any picture parameter set RBSP is present that
is not ever activated in the bitstream, its syntax elements
may have values that would conform to the specified con-
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straints if it were activated by reference in an otherwise-
conforming bitstream. If any adaptation parameter set RBSP
is present that is not ever activated in the bitstream, its
syntax elements may have values that would conform to the
specified constraints if it were activated by reference in an
otherwise-conforming bitstream.

During operation of the decoding process, the values of
parameters of the active video parameter set, the active
sequence parameter set, the active picture parameter set and
the active adaptation parameter set for each type of APS
parameters may be considered in effect. For interpretation of
SEI messages, the values of the parameters of the video
parameter set, sequence parameter set, picture parameter set
and adaptation parameter set that are active for the operation
of'the decoding process for the VCL NAL units of the coded
picture in the same access unit may be considered in effect
unless otherwise specified in the SEI message semantics.

FIG. 7 is a flowchart illustrating an example method for
encoding video data in accordance with the techniques of
this disclosure. Although described with respect to video
encoder 20, it should be understood that other video encod-
ing devices may be configured to perform the method of
FIG. 7.

Initially, in this example, video encoder 20 receives a
bitstream including a one or more layers of raw video data
(100). For example, video source 18 (FIG. 1) may provide
multi-view video data to video encoder 20. Alternatively,
video encoder 20, or a preprocessor thereof, may divide a
raw video bitstream into a plurality of various layers, e.g.,
spatial resolution layers, quality layers, temporal layers, or
the like. In still other examples, a bitstream may be parti-
tioned into a combination of various layers, e.g., any com-
bination of views, spatial resolution layers, quality layers,
temporal layers, or the like.

Video encoder 20 may determine one or more common
parameters for corresponding sequences among a set of
layers (102). Corresponding sequences may be sequences
having corresponding temporal locations in different layers.
That is, a first sequence, having a starting time (in terms of
display time) of T1 and an ending time (again in terms of
display time) of T2, and a second sequence, also having a
starting time of T1 and an ending time of T2, may be said
to correspond to one another. In particular, the first sequence
may form part of a first layer, and the second sequence may
form part of a second, different layer. A “sequence” may
include a series of consecutive pictures in decoding order,
e.g., starting with an instantaneous decoding refresh (IDR)
picture and ending immediately prior to a subsequent IDR
picture in decoding order. In general, the parameters may
correspond to a set of corresponding sequences of one or
more layers, e.g., N layers, where N is an integer. Video
encoder 20 may then encode a VPS including data for the
determined parameters (104). For example, video encoder
20 may code a VPS corresponding to one of the examples of
Table 2 or Table 5.

Video encoder 20 may also determine common param-
eters for a sequence within one layer (106). The sequence
may comprise one of the sequences corresponding to other
sequences in other layers for which the VPS was coded.
Video encoder 20 may code a sequence parameter set (SPS)
including the common parameters for the sequence (108).
Thus, it should be understood that the VPS and the SPS are
separate data structures and corresponding to different types
of video data. Whereas a VPS may correspond to a set of
corresponding sequences among a plurality of layers, the
SPS corresponds to one sequence in one layer. The SPS may
conform substantially to an SPS of H.264/AVC, the SPS of
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H.264/AVC as extended by MVC (illustrated in Table 1
above), the upcoming HEVC standard, or the example of
Table 16 described above. In addition, video encoder 20 may
code a picture parameter set (PPS) for a picture in the
sequence (110). The PPS may conform substantially to an
SPS of H.264/AVC, the upcoming HEVC standard, or the
example of Table 13 described above. Although the method
of FIG. 7 shows coding of only one PPS, it should be
understood that multiple PPSs may be coded. One or more
pictures may refer to the same PPS.

Video encoder 20 may then determine whether the recent
layer for which an SPS and PPSs were coded is the last layer
(112). If the last layer has not yet been addressed (“NO”
branch of 112), video encoder 20 may select a next layer and
code an SPS and one or more PPSs for the next layer, e.g.,
in accordance with steps 106-110. After the last layer has
been addressed (“YES” branch of 112), video encoder 20
may encode video data of the various layers based on the
data of the VPS, SPS, and PPS. Various examples of coding
video data based at least in part on a VPS are described in
greater detail below with respect to FIGS. 9-12.

Although not shown in the example of FIG. 7, in some
examples, video encoder 20 may additionally encode one or
more LPSs and/or one or more GPSs, as described above.
The LPSs may conform substantially to the examples of
Table 9, Table 10, or Table 12, while the GPS may conform
substantially to the examples of Table 14, Table 15, or Table
17. In such examples, video encoder 20 codes the video data
also based at least in part on the LPSs and/or the GPSs.

In this manner, the method of FIG. 7 represents an
example of a method including coding a video parameter set
(VPS) for one or more layers of video data, wherein each of
the one or more layers of video data refer to the VPS, and
coding the one or more layers of video data based at least in
part on the VPS.

FIG. 8 is a flowchart illustrating an example method for
decoding video data in accordance with the techniques of
this disclosure. Although described with respect to video
decoder 30, it should be understood that other video decod-
ing devices may be configured to perform the method of
FIG. 8.

Initially, video decoder 30 receives a bitstream including
a VPS, one or more SPSs, and one or more PPSs for layers
of coded video data (120). Video decoder 30 may then
decode the VPS, which includes common parameters for
corresponding sequences among one or more layers (122).
Likewise, video decoder 30 may decode a sequence param-
eter set including common parameters for a sequence of one
layer (124). Moreover, video decoder 30 may decode a
picture parameter set including parameters for a picture of
the sequence (126). As discussed above, one or more pic-
tures may refer to the same PPS, and therefore, the param-
eters of the PPS may be considered common to one or more
pictures. Likewise, video decoder 30 may decode a plurality
of PPSs for the sequence, although not shown in FIG. 8.

Furthermore, video decoder 30 may determine whether
the most recent layer was the last layer to be addressed
(128). If the most recent layer was not the last layer (“NO”
branch of 128), video decoder 30 may proceed to decode an
SPS and one or more PPSs for a subsequent layer in
accordance with steps 124 and 126. On the other hand, if the
most recent layer was the last layer (“YES” branch of 128),
video decoder 30 may proceed to decode video data of the
layers based on the VPS, SPSs, and PPSs (130). Examples
of coding video data based at least in part on a VPS are
discussed in greater detail with respect to FIGS. 9-12.
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Although not shown in the example of FIG. 8, in some
examples, video decoder 30 may additionally decode one or
more LPSs and/or one or more GPSs, as described above.
The LPSs may conform substantially to the examples of
Table 9, Table 10, or Table 12, while the GPS may conform
substantially to the examples of Table 14, Table 15, or Table
17. In such examples, video decoder 30 decodes the video
data also based at least in part on the LPSs and/or the GPSs.

In this manner, the method of FIG. 8 represents an
example of a method including coding a video parameter set
(VPS) for one or more layers of video data, wherein each of
the one or more layers of video data refer to the VPS, and
coding the one or more layers of video data based at least in
part on the VPS.

FIG. 9 is a flowchart illustrating an example method of
coding video data based at least in part on a number of
temporal layers as signaled in a VPS. The method of FIG. 9
may be performed by video encoder 20 and/or video decoder
30. For purposes of example, the method of FIG. 9 is
described with respect to video decoder 30.

In this example, video decoder 30 codes (that is, decodes)
a VPS indicating a number of temporal layers in video data
(150), e.g., of one or more layers to which the VPS corre-
sponds. For example, video decoder 30 may decode “cnt_t”
as described with respect to Table 2 above. As another
example, video decoder 30 may decode num_temporal_lay-
ers_minusl, as described with respect to Table 5 above.

Based on this indication, in this example, video decoder
30 decodes temporal identifiers for each of the temporal
layers (152). Likewise, video decoder 30 may determine
reference picture identifier values based on the number of
temporal layers (154). For example, video decoder 30 may
be configured to determine that, for a current picture at layer
N, the current picture will not use pictures at or above layer
N+1 for reference. Therefore, video decoder 30 may deter-
mine identifiers for potential reference pictures at layers at
or below layer N. Moreover, video decoder 30 may decode
data of pictures at temporal layer N using reference data of
layers up to (and including) layer N (156). Thus, FIG. 9
represents an example of a method including coding data of
a VPS indicative of a maximum number of temporal layers
in one or more layers of video data, and coding the one or
more layers based at least in part on the VPS.

FIG. 10 is a flowchart illustrating an example method of
coding video data based at least in part on a number of
pictures to be reordered in one or more layers and pictures
to be stored in a decoded picture buffer. The method of FIG.
10 may be performed by video encoder 20 and/or video
decoder 30. For purposes of example, the method of FIG. 10
is described with respect to video decoder 30.

In this example, video decoder 30 decodes a VPS indi-
cating a number of pictures to be reordered in one or more
layers of video data and a number of pictures to be stored in
a decoded picture buffer (e.g., reference picture memory 82)
at a given time (160). For example, video decoder 30 may
decode a syntax element of the VPS corresponding substan-
tially to num_reorder_pics as described with respect to Table
16 above and/or bitstream restriction information that speci-
fies a DPB size. In other examples, the VPS could include
only one or the other, and not necessarily both, of the
number of pictures to be reordered and the number of
pictures to be stored in the decoded picture buffer. Video
decoder 30 may then manage the decoded picture buffer
(e.g., reference picture memory 82) based on the number of
pictures to be reordered and/or stored (162). For example,
video decoder 30 may remove pictures form reference
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picture memory 82 when more than the number of pictures
to be stored are stored in reference picture memory 82.

Video decoder 30 may also determine reference picture
identifier values based on the number of pictures in the DPB
(that is, in reference picture memory 82) (164). Furthermore,
video decoder 30 may decode data of pictures based on the
reference picture identifier values (166). Thus, the method of
FIG. 10 represents an example of a method including coding
data of a VPS indicative of a number of pictures to be stored
in a decoded picture buffer (DPB) during decoding of one or
more layers and a method including coding data of a VPS
indicative of a number of frames to be reordered in at least
one of one or more layers.

FIG. 11 is a flowchart illustrating an example method of
coding video data based at least in part on hypothetical
reference decoder (HRD) parameters signaled in a VPS. The
method of FIG. 11 may be performed by video encoder 20
and/or video decoder 30. For purposes of example, the
method of FIG. 11 is described with respect to video decoder
30.

In this example, video decoder 30 decodes a VPS indi-
cating HRD parameters (170). Video decoder 30 may further
determine removal times for pictures from a coded picture
buffer (CPB) based on the HRD parameters (172). Video
decoder 30 may then remove data from the CPB based on
the determined removal times (174), and decode the data
removed from the CPB. Accordingly, the method of FIG. 11
represents an example of a method including coding data of
a VPS indicative of one or more hypothetical reference
decoder (HRD) parameters, and coding data of one or more
layers based on the HDR parameters.

FIG. 12 is a flowchart illustrating an example method of
coding video data based at least in part on extension data
signaled in a VPS. The method of FIG. 12 may be performed
by video encoder 20 and/or video decoder 30. For purposes
of example, the method of FIG. 12 is described with respect
to video decoder 30.

Video decoder 30, in this example, decodes data of a VPS
indicating whether the VPS includes extension data (180).
For example, video decoder 30 may decode a vps_exten-
sion_flag of the VPS. Video decoder 30 then determines
whether the data indicates that the VPS includes extension
data (182). If the data indicates that the VPS includes
extension data (“YES” branch of 182), video decoder 30
codes VPS extension data for one or more extension coding
tools (184), and decodes video data using the extension
coding tools and extension data (186). On the other hand, if
the data indicates that the VPS does not include extension
data (“NO” branch of 182), video decoder 30 may decode
the video data using conventional coding tools (188). In this
manner, the method of FIG. 12 represents an example of a
method including coding data of a VPS indicative of
whether the VPS includes an extension beyond a corre-
sponding standard, and when the VPS includes the exten-
sion, data for the extension, as well as coding video data
based on the extension data of the VPS.

It is to be recognized that depending on the example,
certain acts or events of any of the techniques described
herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described
acts or events are necessary for the practice of the tech-
niques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded
processing, interrupt processing, or multiple processors,
rather than sequentially.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
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bination thereof. If implemented in software, the functions
may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techniques described in this disclosure. A computer
program product may include a computer-readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transitory media, but
are instead directed to non-transitory, tangible storage
media. Disk and disc, as used herein, includes compact disc
(CD), laser disc, optical disc, digital versatile disc (DVD),
floppy disk and Blu-ray disc, where disks usually reproduce
data magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

In still other examples, this disclosure contemplates a
computer readable medium comprising a data structure
stored thereon, wherein the data structure includes an
encoded bitstream consistent with this disclosure. In par-
ticular, the encoded bitstream may include one or more
layers of video data, and a video parameter (VPS) for the one
or more layers of video data, wherein each of the one or
more layers of video data refer to the VPS and the one or
more layers of video data are coded based at least in part on
the VPS.
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The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, in conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:

1. A method of coding video data, the method comprising:

coding a video parameter set (VPS) for a bitstream

comprising a plurality of layers of video data, wherein

each of the plurality of layers of video data refer to the

VPS, and wherein coding the VPS comprises:

coding data of the VPS indicative of a number of
frames to be reordered in at least one of the plurality
of layers of video data,

coding data of the VPS indicative of a number of
pictures to be stored in a decoded picture buffer
(DPB) during decoding of the plurality of layers of
video data,

coding data of the VPS indicative of a maximum
number of temporal layers in the bitstream including
the plurality of layers of video data;

coding data of the VPS indicative of a maximum
number of views in the bitstream including the
plurality of layers of video data;

coding information defining a mapping of a sample
index to a characteristics indicator, wherein coding
the information defining the mapping comprises cod-
ing one or more of: a respective spatial resolution for
each of a plurality of dependency indexes, a frame
rate for each of a plurality of temporal indexes, or a
view identifier for each of a plurality of view
indexes; and

coding the plurality of layers of video data based at
least in part on the VPS.

2. The method of claim 1, wherein coding the VPS further
comprises coding data of the VPS indicative of one or more
sets of hypothetical reference decoder (HRD) parameters.

3. The method of claim 1, wherein coding the VPS further
comprises coding data of the VPS indicative of whether the
VPS includes an extension beyond a corresponding stan-
dard, and when the VPS includes the extension, data for the
extension.

4. The method of claim 1, wherein coding the plurality of
layers of video data comprises coding the plurality of layers
of video data in accordance with High Efficiency Video
Coding (HEVC).

5. The method of claim 1, wherein coding the plurality of
layers of video data comprises coding the plurality of layers
of video data in accordance with at least one of Multiview
Video Coding (MVC) or Scalable Video Coding (SVC).

6. The method of claim 1, wherein coding the VPS
comprises coding information specifying, for one or more
dimensions of the plurality of layers of video data, one or
more of:

a number of priority layers in the plurality of layers of

video data,

a number of dependency layers in the plurality of layers

of video data,

15

20

25

30

35

40

45

55

65

52

a number of temporal layers in the plurality of layers of

video data, or

a maximum number of quality layers for any of the

dependency layers in the plurality of layers of video
data.

7. The method of claim 6, wherein when a subset of the
plurality of layers of video data have the same spatial
resolution and the same bit depth, each of the layers of the
subset corresponds to a different one of the dependency
layers.

8. The method of claim 7, wherein coding the information
defining the mapping comprises coding information that
specifies a respective characteristics indicator for each of a
plurality of characteristics indexes when a characteristics
indicator defining characteristics of a dimension of the
plurality of layers of video data is not within an index range
from zero to a sample dimension counter minus 1 wherein
the counter is defined by an index.

9. The method of claim 7, wherein coding the information
defining the mapping comprises coding one or more of:

a pair of specific depth values for luminance and chromi-

nance for each of a plurality of bit depth indexes, or

a specific chrominance sampling format indicator for each

of a plurality of chrominance sampling formats.

10. The method of claim 1, wherein coding the VPS
comprises coding information defining control parameters
and one or more tool enabling/disabling flags.

11. The method of claim 10, wherein the control param-
eters and the one or more tool enabling/disabling flags
comprise one or more of:

a pcm_bit_depth_luma_minus],

a pcm_bit_depth_chroma_minus1,

a loop_filter_across_slice_flag,

a pcm_loop_filter_disable_{flag,

a temporal_id_nesting_flag,

one or more tile related syntax elements,

a chroma_pred_from_luma_enabled_flag,

a sample_adaptive_offset_enabled_flag,

an adaptive_loop_filter_enabled_flag, or

an inter_4x4_enabled_flag.

12. The method of claim 1, wherein coding the VPS
comprises coding information defining one or more opera-
tion point descriptors.

13. The method of claim 12, wherein coding the infor-
mation defining the one or more operation point descriptors
comprises coding information defining one or more of:

a number of maximum operation points,

dependency between different layers or views,

profile and level for each of the operation points, or

bit rate for each of the operation points.

14. The method of claim 1, further comprising coding a
respective layered sequence parameter set (LPS) for each of
the plurality of layers of video data, wherein coding the
plurality of layers of video data based at least in part on the
VPS comprises coding the plurality of layers of video data
based at least in part on the VPS and the respective LPS.

15. The method of claim 14, wherein coding the respec-
tive LPSs for each of the plurality of layers of video data
comprises coding information defining a sample dimension
indication that indicates, for each dimension, an index to
each dimension.

16. The method of claim 14, wherein coding the respec-
tive LPSs for each of the plurality of layers of video data
comprises coding information defining control parameters
and tool enabling/disabling flags.
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17. The method of claim 16, wherein the control param-
eters and the one or more tool enabling/disabling flags
comprise one or more of:

a pcm_bit_depth_luma_minus1,

a pcm_bit_depth_chroma_minusl,

a loop_filter_across_slice_flag,

a pcm_loop_filter_disable_flag,

one or more tile related syntax elements,

a chroma_pred_from_luma_enabled_flag,

a sample_adaptive_offset_enabled_flag,

an adaptive_loop_filter_enabled_flag, or

a coding unit (CU) hierarchy.

18. The method of claim 14, wherein coding the respec-
tive LPSs for each of the plurality of layers of video data
comprises coding information defining information of one or
more other parameter sets applying to at least one of a slice,
a group of slices, a picture, or several pictures referring to a
common picture parameter set (PPS).

19. The method of claim 1, further comprising coding one
or more picture parameter sets (PPSs) such that the PPSs do
not refer to the VPS, do not refer to layered sequence
parameter sets (LPSs) of the plurality of layers of video data.

20. The method of claim 19, wherein coding the plurality
of layers of video data based at least in part on the VPS
comprises coding the plurality of layers of video data based
at least in part on the VPS, the PPSs, and the LPSs, such that
when a syntax element of one of the PPSs conflicts with the
VPS or a respective one of the LPSs, coding a corresponding
one of the plurality of layers of video data based on the
syntax element of the one of the PPSs.

21. The method of claim 1, further comprising coding a
grouping parameter set (GPS) that groups all parameter sets,
including the VPS, for the plurality of layers of video data
together.

22. The method of claim 21, wherein coding the GPS
comprises coding information defining an identifier of the
GPS, the method further comprising coding information of
a slice header corresponding to the identifier of the GPS.

23. The method of claim 1, wherein coding the plurality
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information defining the mapping, the video coder is
configured to code one or more of: a respective
spatial resolution for each of a plurality of depen-
dency indexes, a frame rate for each of a plurality of
temporal indexes, or a view identifier for each of a
plurality of view indexes; and

code the plurality of layers of video data based at least
in part on the VPS.

26. The device of claim 25, wherein the video coder
configured to code the VPS is further configured to code data
of the VPS indicative of one or more sets of hypothetical
reference decoder (HRD) parameters.

27. The device of claim 25, wherein the video coder
configured to code the VPS is further configured to code data
of the VPS indicative of whether the VPS includes an
extension beyond a corresponding standard, and when the
VPS includes the extension, data for the extension.

28. The device of claim 25, wherein the video coder is
configured to code the plurality of layers of video data in
accordance with one of High Efficiency Video Coding
(HEVC), Multiview Video Coding (MVC), and Scalable
Video Coding (SVO).

29. The device of claim 25, wherein the video coder
comprises a video decoder, and wherein the device further
comprises a display configured to display the video data.

30. The device of claim 25, wherein the video coder
comprises a video encoder, and wherein the device further
comprises a camera configured to generate the video data.

31. The device of claim 25, wherein the device comprises
at least one of:

an integrated circuit;

a microprocessor; or

a mobile wireless communication device that includes the

video coder.

32. The device of claim 25, wherein the video coder
configured to code the VPS is configured to code informa-
tion defining one or more operation point descriptors.

33. The method of claim 32, wherein to code the infor-
mation defining the one or more operation point descriptors,

of layers of video data comprises decoding the plurality of 40 the video coder is configured to code information defining

layers of video data, and wherein coding the VPS comprises
parsing the VPS.

24. The method of claim 1, wherein coding the plurality
of layers of video data comprises encoding the plurality of
layers of video data, and wherein coding the VPS comprises
constructing the VPS.

25. A device for coding video data, the device comprising
a video coder configured to:

code a video parameter set (VPS) for a bitstream com-

prising a plurality of layers of video data, wherein each

of the plurality of layers of video data refer to the VPS,

and wherein the video coder configured to code the

VPS is configured to:

code data of the VPS indicative of a number of frames
to be reordered in at least one of the plurality of
layers of video data,

code data of the VPS indicative of a number of pictures
to be stored in a decoded picture buffer (DPB) during
decoding of the plurality of layers of video data,

code data of the VPS indicative of a maximum number
of temporal layers in the bitstream including the
plurality of layers of video data;

code data of the VPS indicative of a maximum number
of views in the bitstream including the plurality of
layers of video data;

code information defining a mapping of a sample index
to a characteristics indicator, wherein to code the
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one or more of:
a number of maximum operation points,
dependency between different layers or views,
profile and level for each of the operation points, or
bit rate for each of the operation points.
34. A device for coding video data, the device comprising:
means for coding a video parameter set (VPS) for a
bitstream comprising a plurality of layers of video data,
wherein each of the plurality of layers of video data
refer to the VPS, and wherein the means for coding the
VPS comprises:
means for coding data of the VPS indicative of a
number of frames to be reordered in at least one of
the plurality of layers of video data,
means for coding data of the VPS indicative of a
number of pictures to be stored in a decoded picture
buffer (DPB) during decoding of the plurality of
layers of video data,
means for coding data of the VPS indicative of a
maximum number of temporal layers in the bitstream
including the plurality of layers of video data;
means for coding data of the VPS indicative of a
maximum number of views in the bitstream includ-
ing the plurality of layers of video data;
means for coding information defining a mapping of a
sample index to a characteristics indicator, wherein
the means for coding the information defining the
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mapping comprises means for coding one or more
of: a respective spatial resolution for each of a
plurality of dependency indexes, a frame rate for
each of a plurality of temporal indexes, or a view
identifier for each of a plurality of view indexes; and

means for coding the plurality of layers of video data
based at least in part on the VPS.

35. The device of claim 34, wherein the means for coding
the VPS further comprises means for coding data of the VPS
indicative of one or more sets of hypothetical reference
decoder (HRD) parameters.

36. The device of claim 34, wherein the means for coding
the VPS further comprises means for coding data of the VPS
indicative of whether the VPS includes an extension beyond
a corresponding standard, and when the VPS includes the
extension, data for the extension.

37. The device of claim 34, wherein the means for coding
the VPS comprises means for coding the plurality of layers
of video data in accordance with one of High Efficiency
Video Coding (HEVC), Multiview Video Coding (MVC),
and Scalable Video Coding (SVC).

38. The device of claim 34, wherein the means for coding
the VPS comprises means for coding information defining
one or more operation point descriptors.

39. The device of claim 38, wherein the means for coding
the information defining the one or more operation point
descriptors comprises means for coding information defin-
ing one or more of:

a number of maximum operation points,

dependency between different layers or views,

profile and level for each of the operation points, or

bit rate for each of the operation points.

40. A non-transitory computer-readable storage medium
having stored thereon instructions that, when executed,
cause a processor to:

code a video parameter set (VPS) for a bitstream com-

prising a plurality of layers of video data, wherein each

of the plurality of layers of video data refer to the VPS,

and wherein the instructions that cause the processor to

code the VPS comprise instructions that cause the

processor to:

code data of the VPS indicative of a number of frames
to be reordered in at least one of the plurality of
layers of video data,

code data of the VPS indicative of a number of pictures
to be stored in a decoded picture buffer (DPB) during
decoding of the plurality of layers of video data,

code data of the VPS indicative of a maximum number
of temporal layers in the bitstream including the
plurality of layers of video data;
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code data of the VPS indicative of a maximum number
of views in the bitstream including the plurality of
layers of video data;

code information defining a mapping of a sample index
to a characteristics indicator, wherein the instruc-
tions that cause the processor to code information
defining the mapping further comprise instructions
that, when executed, cause the processor to code one
or more of: a respective spatial resolution for each of
a plurality of dependency indexes, a frame rate for
each of a plurality of temporal indexes, or a view
identifier for each of a plurality of view indexes; and

code the plurality of layers of video data based at least
in part on the VPS.

41. The non-transitory computer-readable storage
medium of claim 40, wherein the instructions that cause the
processor to code the VPS further comprise instructions that,
when executed, cause the processor to code data of the VPS
indicative of one or more sets of hypothetical reference
decoder (HRD) parameters.

42. The non-transitory computer-readable storage
medium of claim 40, wherein the instructions that cause the
processor to code the VPS further comprise instructions that,
when executed, cause the processor to code data of the VPS
indicative of whether the VPS includes an extension beyond
a corresponding standard, and when the VPS includes the
extension, data for the extension.

43. The non-transitory computer-readable storage
medium of claim 40, wherein the instructions that cause the
processor to code the plurality of layers of video data
comprise instructions that, when executed, cause the pro-
cessor to code the plurality of layers of video data in
accordance with one of High Efficiency Video Coding
(HEVC), Multiview Video Coding (MVC), and Scalable
Video Coding (SVO).

44. The non-transitory computer-readable storage
medium of claim 40, wherein the instructions that cause the
processor to code the VPS further comprise instructions that,
when executed, cause the processor to code information
defining one or more operation point descriptors.

45. The non-transitory computer-readable storage
medium of claim 44, wherein the instructions that cause the
processor to code the information defining the one or more
operation point descriptors further comprise instructions
that, when executed, cause the processor to code information
defining one or more of:

a number of maximum operation points,

dependency between different layers or views,

profile and level for each of the operation points, or

bit rate for each of the operation points.
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